Summary: | Neural networks have been proved to perform well in network intrusion detection. In order to acquire better features of network traffic, more learning layers are necessarily required. However, according to the results of the previous research, adding layers to the neural networks might fail to improve the classification results. In fact, after the number of layers has reached a certain threshold, performance of the model tends to degrade. In this paper, we propose a network intrusion detection model based on residual learning. After transforming the UNSW-NB15 data set into images, deeper convolutional neural networks with residual blocks are built to learn more critical features. Instead of the cross-entropy loss function, the modified focal loss is calculated to address the class imbalance problem in the training set and identify minor attacks in the testing set. Batch normalization and global average pooling are used to avoid overfitting and enhance the model. Experimental results show that the proposed model can improve attack detection accuracy compared with existing models.
|