On Robust Saddle-Point Criterion in Optimization Problems with Curvilinear Integral Functionals

In this paper, we introduce a new class of multi-dimensional robust optimization problems (named <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P...

Full description

Bibliographic Details
Main Authors: Savin Treanţă, Koushik Das
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/15/1790
id doaj-f6a85bcd0565484c8aba900b1458467f
record_format Article
spelling doaj-f6a85bcd0565484c8aba900b1458467f2021-08-06T15:28:26ZengMDPI AGMathematics2227-73902021-07-0191790179010.3390/math9151790On Robust Saddle-Point Criterion in Optimization Problems with Curvilinear Integral FunctionalsSavin Treanţă0Koushik Das1Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, RomaniaDepartment of Mathematics, Taki Government College, Taki 743429, IndiaIn this paper, we introduce a new class of multi-dimensional robust optimization problems (named <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>) with mixed constraints implying second-order partial differential equations (PDEs) and inequations (PDIs). Moreover, we define an auxiliary (modified) class of robust control problems (named <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mi>b</mi><mo stretchy="false">¯</mo></mover><mo>,</mo><mover accent="true"><mi>c</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">)</mo></mrow></msub></semantics></math></inline-formula>), which is much easier to study, and provide some characterization results of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mi>b</mi><mo stretchy="false">¯</mo></mover><mo>,</mo><mover accent="true"><mi>c</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">)</mo></mrow></msub></semantics></math></inline-formula> by using the notions of normal weak robust optimal solution and robust saddle-point associated with a Lagrange functional corresponding to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mi>b</mi><mo stretchy="false">¯</mo></mover><mo>,</mo><mover accent="true"><mi>c</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">)</mo></mrow></msub></semantics></math></inline-formula>. For this aim, we consider path-independent curvilinear integral cost functionals and the notion of convexity associated with a curvilinear integral functional generated by a controlled closed (complete integrable) Lagrange 1-form.https://www.mdpi.com/2227-7390/9/15/1790Lagrange 1-formsecond-order Lagrangiannormal weak robust optimal solutionmodified objective function methodrobust saddle-point
collection DOAJ
language English
format Article
sources DOAJ
author Savin Treanţă
Koushik Das
spellingShingle Savin Treanţă
Koushik Das
On Robust Saddle-Point Criterion in Optimization Problems with Curvilinear Integral Functionals
Mathematics
Lagrange 1-form
second-order Lagrangian
normal weak robust optimal solution
modified objective function method
robust saddle-point
author_facet Savin Treanţă
Koushik Das
author_sort Savin Treanţă
title On Robust Saddle-Point Criterion in Optimization Problems with Curvilinear Integral Functionals
title_short On Robust Saddle-Point Criterion in Optimization Problems with Curvilinear Integral Functionals
title_full On Robust Saddle-Point Criterion in Optimization Problems with Curvilinear Integral Functionals
title_fullStr On Robust Saddle-Point Criterion in Optimization Problems with Curvilinear Integral Functionals
title_full_unstemmed On Robust Saddle-Point Criterion in Optimization Problems with Curvilinear Integral Functionals
title_sort on robust saddle-point criterion in optimization problems with curvilinear integral functionals
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-07-01
description In this paper, we introduce a new class of multi-dimensional robust optimization problems (named <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>) with mixed constraints implying second-order partial differential equations (PDEs) and inequations (PDIs). Moreover, we define an auxiliary (modified) class of robust control problems (named <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mi>b</mi><mo stretchy="false">¯</mo></mover><mo>,</mo><mover accent="true"><mi>c</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">)</mo></mrow></msub></semantics></math></inline-formula>), which is much easier to study, and provide some characterization results of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mi>b</mi><mo stretchy="false">¯</mo></mover><mo>,</mo><mover accent="true"><mi>c</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">)</mo></mrow></msub></semantics></math></inline-formula> by using the notions of normal weak robust optimal solution and robust saddle-point associated with a Lagrange functional corresponding to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mi>b</mi><mo stretchy="false">¯</mo></mover><mo>,</mo><mover accent="true"><mi>c</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">)</mo></mrow></msub></semantics></math></inline-formula>. For this aim, we consider path-independent curvilinear integral cost functionals and the notion of convexity associated with a curvilinear integral functional generated by a controlled closed (complete integrable) Lagrange 1-form.
topic Lagrange 1-form
second-order Lagrangian
normal weak robust optimal solution
modified objective function method
robust saddle-point
url https://www.mdpi.com/2227-7390/9/15/1790
work_keys_str_mv AT savintreanta onrobustsaddlepointcriterioninoptimizationproblemswithcurvilinearintegralfunctionals
AT koushikdas onrobustsaddlepointcriterioninoptimizationproblemswithcurvilinearintegralfunctionals
_version_ 1721217988954161152