Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.

Biogenesis and recycling of iron-sulfur (Fe-S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe-S clusters are assembled into apoproteins by the iron-sulfur cluster machinery (ISC). The aim of the present study w...

Full description

Bibliographic Details
Main Authors: Mauricio Gomez, Rocío V Pérez-Gallardo, Luis A Sánchez, Alma L Díaz-Pérez, Christian Cortés-Rojo, Victor Meza Carmen, Alfredo Saavedra-Molina, Javier Lara-Romero, Sergio Jiménez-Sandoval, Francisco Rodríguez, José S Rodríguez-Zavala, Jesús Campos-García
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4214746?pdf=render
id doaj-f67c7665a6924a168269b9b73ff6d148
record_format Article
spelling doaj-f67c7665a6924a168269b9b73ff6d1482020-11-24T22:00:37ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-01910e11158510.1371/journal.pone.0111585Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.Mauricio GomezRocío V Pérez-GallardoLuis A SánchezAlma L Díaz-PérezChristian Cortés-RojoVictor Meza CarmenAlfredo Saavedra-MolinaJavier Lara-RomeroSergio Jiménez-SandovalFrancisco RodríguezJosé S Rodríguez-ZavalaJesús Campos-GarcíaBiogenesis and recycling of iron-sulfur (Fe-S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe-S clusters are assembled into apoproteins by the iron-sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe-S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe-S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe-S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.http://europepmc.org/articles/PMC4214746?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Mauricio Gomez
Rocío V Pérez-Gallardo
Luis A Sánchez
Alma L Díaz-Pérez
Christian Cortés-Rojo
Victor Meza Carmen
Alfredo Saavedra-Molina
Javier Lara-Romero
Sergio Jiménez-Sandoval
Francisco Rodríguez
José S Rodríguez-Zavala
Jesús Campos-García
spellingShingle Mauricio Gomez
Rocío V Pérez-Gallardo
Luis A Sánchez
Alma L Díaz-Pérez
Christian Cortés-Rojo
Victor Meza Carmen
Alfredo Saavedra-Molina
Javier Lara-Romero
Sergio Jiménez-Sandoval
Francisco Rodríguez
José S Rodríguez-Zavala
Jesús Campos-García
Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.
PLoS ONE
author_facet Mauricio Gomez
Rocío V Pérez-Gallardo
Luis A Sánchez
Alma L Díaz-Pérez
Christian Cortés-Rojo
Victor Meza Carmen
Alfredo Saavedra-Molina
Javier Lara-Romero
Sergio Jiménez-Sandoval
Francisco Rodríguez
José S Rodríguez-Zavala
Jesús Campos-García
author_sort Mauricio Gomez
title Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.
title_short Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.
title_full Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.
title_fullStr Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.
title_full_unstemmed Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.
title_sort malfunctioning of the iron-sulfur cluster assembly machinery in saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2014-01-01
description Biogenesis and recycling of iron-sulfur (Fe-S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe-S clusters are assembled into apoproteins by the iron-sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe-S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe-S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe-S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.
url http://europepmc.org/articles/PMC4214746?pdf=render
work_keys_str_mv AT mauriciogomez malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT rociovperezgallardo malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT luisasanchez malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT almaldiazperez malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT christiancortesrojo malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT victormezacarmen malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT alfredosaavedramolina malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT javierlararomero malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT sergiojimenezsandoval malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT franciscorodriguez malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT josesrodriguezzavala malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
AT jesuscamposgarcia malfunctioningoftheironsulfurclusterassemblymachineryinsaccharomycescerevisiaeproducesoxidativestressviaanirondependentmechanismcausingdysfunctioninrespiratorycomplexes
_version_ 1725843631802155008