Implementation and Critical Investigation on Modulation Schemes of Three Phase Impedance Source Inverter
New control circuits and algorithms are frequently proposed to control the impedance (Z) source inverter in efficient way with added benefits. As a result, several modified control techniques have been proposed in recent years. Although these techniques are clearly superior to the simple boost contr...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Iran University of Science and Technology
2010-06-01
|
Series: | Iranian Journal of Electrical and Electronic Engineering |
Subjects: | |
Online Access: | http://ijeee.iust.ac.ir/browse.php?a_code=A-10-231-2&slc_lang=en&sid=1 |
Summary: | New control circuits and algorithms are frequently proposed to control the
impedance (Z) source inverter in efficient way with added benefits. As a result, several
modified control techniques have been proposed in recent years. Although these techniques
are clearly superior to the simple boost control method which was initially proposed along
with the Z-source inverter (ZSI), little or conflicting data is available about their merits
relating to each other. In this paper, it is shown how the shoot-through periods are inserted
in the switching waveforms of the power switches and the performances of them are
analyzed based on the operation of ZSI. Simple boost control, maximum boost control,
constant boost control and space vector modulation based control methods given in the
literature has been illustrated with their control characteristics. A critical investigation on
ripples of the impedance source elements, output voltage controllability, output harmonic
profile, transient response of the voltage across the impedance source capacitor and voltage
stress ratio etc has been presented with the simulation results. The simulation results are
experimentally verified in the laboratory with digital signal processors (DSP). DSP coding
for the above all control techniques has been generated by interfacing Matlab/Simulink
with DSP C6000 tool box and signal processing block set. |
---|---|
ISSN: | 1735-2827 2383-3890 |