Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics
The dynamics of a satellite on a circular orbit under the influence of gravitational and active damping torques, which are proportional to the projections of the angular velocity of the satellite, is investigated. Computer algebra Gröbner basis methods for the determination of all equilibrium orient...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | https://doi.org/10.1051/epjconf/201817305008 |
id |
doaj-f66a0190e46346368ff3291f50a8b6db |
---|---|
record_format |
Article |
spelling |
doaj-f66a0190e46346368ff3291f50a8b6db2021-08-02T04:37:43ZengEDP SciencesEPJ Web of Conferences2100-014X2018-01-011730500810.1051/epjconf/201817305008epjconf_mmcp2018_05008Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite DynamicsGutnik Sergey A.Sarychev Vasily A.The dynamics of a satellite on a circular orbit under the influence of gravitational and active damping torques, which are proportional to the projections of the angular velocity of the satellite, is investigated. Computer algebra Gröbner basis methods for the determination of all equilibrium orientations of the satellite in the orbital coordinate system with given damping torque and given principal central moments of inertia were used. The conditions of the equilibria existence depending on three damping parameters were obtained from the analysis of the real roots of the algebraic equations spanned by the constructed Gröbner basis. Conditions of asymptotic stability of the satellite equilibria and the transition decay processes of the spatial oscillations of the satellite at different damping parameters have also been obtained.https://doi.org/10.1051/epjconf/201817305008 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gutnik Sergey A. Sarychev Vasily A. |
spellingShingle |
Gutnik Sergey A. Sarychev Vasily A. Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics EPJ Web of Conferences |
author_facet |
Gutnik Sergey A. Sarychev Vasily A. |
author_sort |
Gutnik Sergey A. |
title |
Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics |
title_short |
Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics |
title_full |
Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics |
title_fullStr |
Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics |
title_full_unstemmed |
Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics |
title_sort |
symbolic-numerical modeling of the influence of damping moments on satellite dynamics |
publisher |
EDP Sciences |
series |
EPJ Web of Conferences |
issn |
2100-014X |
publishDate |
2018-01-01 |
description |
The dynamics of a satellite on a circular orbit under the influence of gravitational and active damping torques, which are proportional to the projections of the angular velocity of the satellite, is investigated. Computer algebra Gröbner basis methods for the determination of all equilibrium orientations of the satellite in the orbital coordinate system with given damping torque and given principal central moments of inertia were used. The conditions of the equilibria existence depending on three damping parameters were obtained from the analysis of the real roots of the algebraic equations spanned by the constructed Gröbner basis. Conditions of asymptotic stability of the satellite equilibria and the transition decay processes of the spatial oscillations of the satellite at different damping parameters have also been obtained. |
url |
https://doi.org/10.1051/epjconf/201817305008 |
work_keys_str_mv |
AT gutniksergeya symbolicnumericalmodelingoftheinfluenceofdampingmomentsonsatellitedynamics AT sarychevvasilya symbolicnumericalmodelingoftheinfluenceofdampingmomentsonsatellitedynamics |
_version_ |
1721242329677824000 |