PEMANFAATAN TEKNOLOGI TEPAT GUNA IDENTIFIKASI TUMBUHAN OBAT BERBASIS CITRA

Indonesia is a mega biodiversity country including many kind medicinal plants. It is not easy to identify the various kinds of the medicinal plants especially for common people. Therefore, we need a computer-based automatic system as a tool to identify these various types of the medicinal plants. De...

Full description

Bibliographic Details
Main Authors: Yeni Herdiyeni, Julio Adisantoso, Ellyn K Damayanti, Ervizal AM Zuhud, Elvira Nurfadhila, Kristina Paskianti
Format: Article
Language:English
Published: Bogor Agricultural University 2013-08-01
Series:Jurnal Ilmu Pertanian Indonesia
Subjects:
Online Access:http://journal.ipb.ac.id/index.php/JIPI/article/view/8376
id doaj-f65e3d118d80434782d49c7476ad6dd5
record_format Article
spelling doaj-f65e3d118d80434782d49c7476ad6dd52020-11-24T23:17:44ZengBogor Agricultural UniversityJurnal Ilmu Pertanian Indonesia0853-42172443-34622013-08-011828591PEMANFAATAN TEKNOLOGI TEPAT GUNA IDENTIFIKASI TUMBUHAN OBAT BERBASIS CITRAYeni Herdiyeni0Julio Adisantoso1Ellyn K Damayanti2Ervizal AM Zuhud3Elvira Nurfadhila4Kristina Paskianti5Departemen Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680Departemen Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680Departemen Konservasi Sumber daya dan Ekowisata, Fakultas Kehutanan, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680Departemen Konservasi Sumber daya dan Ekowisata, Fakultas Kehutanan, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680Departemen Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680Departemen Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680Indonesia is a mega biodiversity country including many kind medicinal plants. It is not easy to identify the various kinds of the medicinal plants especially for common people. Therefore, we need a computer-based automatic system as a tool to identify these various types of the medicinal plants. Developing of computer-based automatic system for medicinal plant identification has been done based on leaf image. There are 30 species of medicinal plants used in this study. There are 3 features for identification, i.e. morphology, texture, and shape. To improve the accuracy of identification we applied probabilistic neural network to classify the species of medicinal plant. The experiment results showed that the accuracy of identification increase to 74.67%. Developing of search engine has been done as well. We used 32 species of medicinal plant. The number of document was 132 documents. The document consists of name, family, description, diseases, and chemical substances. To improve the accuracy of searching, we applied KNN Fuzzy to classify document into 2 categories, i.e., family and diseases. The experiment results showed that the accuracy of average of precision is 96% for only word of length query and 89% for two words of length query. The system is very beneficial for people in society because it can be used to identify medicinal plants easily and the relevant communitis become independent in maintaining family health and giving opportunities as well as income of the people. Hence, the system is promising for leaf identification and supporting plant biodiversity in Indonesia.http://journal.ipb.ac.id/index.php/JIPI/article/view/8376leaf identificationleaf morphologyleaf shapemedicinal plantsprobabilistic neural networkproduct decision rule
collection DOAJ
language English
format Article
sources DOAJ
author Yeni Herdiyeni
Julio Adisantoso
Ellyn K Damayanti
Ervizal AM Zuhud
Elvira Nurfadhila
Kristina Paskianti
spellingShingle Yeni Herdiyeni
Julio Adisantoso
Ellyn K Damayanti
Ervizal AM Zuhud
Elvira Nurfadhila
Kristina Paskianti
PEMANFAATAN TEKNOLOGI TEPAT GUNA IDENTIFIKASI TUMBUHAN OBAT BERBASIS CITRA
Jurnal Ilmu Pertanian Indonesia
leaf identification
leaf morphology
leaf shape
medicinal plants
probabilistic neural network
product decision rule
author_facet Yeni Herdiyeni
Julio Adisantoso
Ellyn K Damayanti
Ervizal AM Zuhud
Elvira Nurfadhila
Kristina Paskianti
author_sort Yeni Herdiyeni
title PEMANFAATAN TEKNOLOGI TEPAT GUNA IDENTIFIKASI TUMBUHAN OBAT BERBASIS CITRA
title_short PEMANFAATAN TEKNOLOGI TEPAT GUNA IDENTIFIKASI TUMBUHAN OBAT BERBASIS CITRA
title_full PEMANFAATAN TEKNOLOGI TEPAT GUNA IDENTIFIKASI TUMBUHAN OBAT BERBASIS CITRA
title_fullStr PEMANFAATAN TEKNOLOGI TEPAT GUNA IDENTIFIKASI TUMBUHAN OBAT BERBASIS CITRA
title_full_unstemmed PEMANFAATAN TEKNOLOGI TEPAT GUNA IDENTIFIKASI TUMBUHAN OBAT BERBASIS CITRA
title_sort pemanfaatan teknologi tepat guna identifikasi tumbuhan obat berbasis citra
publisher Bogor Agricultural University
series Jurnal Ilmu Pertanian Indonesia
issn 0853-4217
2443-3462
publishDate 2013-08-01
description Indonesia is a mega biodiversity country including many kind medicinal plants. It is not easy to identify the various kinds of the medicinal plants especially for common people. Therefore, we need a computer-based automatic system as a tool to identify these various types of the medicinal plants. Developing of computer-based automatic system for medicinal plant identification has been done based on leaf image. There are 30 species of medicinal plants used in this study. There are 3 features for identification, i.e. morphology, texture, and shape. To improve the accuracy of identification we applied probabilistic neural network to classify the species of medicinal plant. The experiment results showed that the accuracy of identification increase to 74.67%. Developing of search engine has been done as well. We used 32 species of medicinal plant. The number of document was 132 documents. The document consists of name, family, description, diseases, and chemical substances. To improve the accuracy of searching, we applied KNN Fuzzy to classify document into 2 categories, i.e., family and diseases. The experiment results showed that the accuracy of average of precision is 96% for only word of length query and 89% for two words of length query. The system is very beneficial for people in society because it can be used to identify medicinal plants easily and the relevant communitis become independent in maintaining family health and giving opportunities as well as income of the people. Hence, the system is promising for leaf identification and supporting plant biodiversity in Indonesia.
topic leaf identification
leaf morphology
leaf shape
medicinal plants
probabilistic neural network
product decision rule
url http://journal.ipb.ac.id/index.php/JIPI/article/view/8376
work_keys_str_mv AT yeniherdiyeni pemanfaatanteknologitepatgunaidentifikasitumbuhanobatberbasiscitra
AT julioadisantoso pemanfaatanteknologitepatgunaidentifikasitumbuhanobatberbasiscitra
AT ellynkdamayanti pemanfaatanteknologitepatgunaidentifikasitumbuhanobatberbasiscitra
AT ervizalamzuhud pemanfaatanteknologitepatgunaidentifikasitumbuhanobatberbasiscitra
AT elviranurfadhila pemanfaatanteknologitepatgunaidentifikasitumbuhanobatberbasiscitra
AT kristinapaskianti pemanfaatanteknologitepatgunaidentifikasitumbuhanobatberbasiscitra
_version_ 1725583696091676672