Prediction of powder particle size during centrifugal atomisation using a rotating disk

The centrifugal atomisation of metallic melts using a rotating disk is an important process for powder production and spray deposition. The theoretical prediction of powder particle size is desirable for the design of atomisers. In this paper, wave theory was applied to analyse the disintegration of...

Full description

Bibliographic Details
Main Author: Huiping Li and Xucheng Deng
Format: Article
Language:English
Published: Taylor & Francis Group 2007-01-01
Series:Science and Technology of Advanced Materials
Online Access:http://www.iop.org/EJ/abstract/1468-6996/8/4/A05
Description
Summary:The centrifugal atomisation of metallic melts using a rotating disk is an important process for powder production and spray deposition. The theoretical prediction of powder particle size is desirable for the design of atomisers. In this paper, wave theory was applied to analyse the disintegration of metallic melts in the film disintegration regime during centrifugal atomisation using a rotating disk. A mathematical model was proposed to predict the spray parameters. The governing equation for the fastest-growing wave number was developed and solved numerically. The effect of the variation in film thickness during film extension was taken into account. Film length and powder particle size were calculated and compared with available experimental data in the literature, and a good agreement was achieved. The influence of the break-up parameter was studied, and it is shown that the break-up parameter is not sensitive to the predicted powder particle size. Both simulated results and experimental data showed that fine powders can be produced by increasing disk speed.
ISSN:1468-6996
1878-5514