Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces

In the automotive industry, the use of stamped aluminium alloy components has become a very common occurrence. For the appropriate design of these components, it is necessary to know how the manufacturing process affects the material properties. In the first place, high plastic strains (<inline-f...

Full description

Bibliographic Details
Main Authors: Isidoro Iván Cuesta, Pavel Michel Almaguer-Zaldivar, Jesús Manuel Alegre
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/12/11/1838
id doaj-f63cd52a888848d89e4a3b8ef319db21
record_format Article
spelling doaj-f63cd52a888848d89e4a3b8ef319db212020-11-24T21:18:04ZengMDPI AGMaterials1996-19442019-06-011211183810.3390/ma12111838ma12111838Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response SurfacesIsidoro Iván Cuesta0Pavel Michel Almaguer-Zaldivar1Jesús Manuel Alegre2Structural Integrity Group, Universidad de Burgos, Avda. Cantabria s/n, 09006 Burgos, SpainCAD/CAM Study Center, University of Holguín, Ave XX Aniversario, 80100 Holguín, CubaStructural Integrity Group, Universidad de Burgos, Avda. Cantabria s/n, 09006 Burgos, SpainIn the automotive industry, the use of stamped aluminium alloy components has become a very common occurrence. For the appropriate design of these components, it is necessary to know how the manufacturing process affects the material properties. In the first place, high plastic strains (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#949;</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> </inline-formula>) can be generated during the stamping process, which can result in a change in the residual stress and mechanical properties in the plastically deformed areas. Furthermore, if a last coat of paint that is usually subjected to a thermal cycle, characterized by temperature (<inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula>) and exposure time (<inline-formula> <math display="inline"> <semantics> <mi>t</mi> </semantics> </math> </inline-formula>), is applied, it can also influence mechanical behaviour. Consequently, this paper studies how both processes affect the mechanical behaviour of an aluminium alloy of the 5000 series, commonly used in these types of components. In particular, the mechanical properties such as the yield stress at 0.2% (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#963;</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>), the ultimate tensile strength (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>) and the engineering strain at break (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>f</mi> </msub> </mrow> </semantics> </math> </inline-formula>) have been analysed. To achieve this, a response surface technique, based on the design of experiments, has been used. The response surfaces obtained allow for the prediction of mechanical properties <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#963;</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>f</mi> </msub> </mrow> </semantics> </math> </inline-formula> for any combination of values of <inline-formula> <math display="inline"> <semantics> <mi>t</mi> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#949;</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/1996-1944/12/11/1838mechanical behaviourstamped aluminium alloy componentsresponse surface techniquedesign of experiments
collection DOAJ
language English
format Article
sources DOAJ
author Isidoro Iván Cuesta
Pavel Michel Almaguer-Zaldivar
Jesús Manuel Alegre
spellingShingle Isidoro Iván Cuesta
Pavel Michel Almaguer-Zaldivar
Jesús Manuel Alegre
Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces
Materials
mechanical behaviour
stamped aluminium alloy components
response surface technique
design of experiments
author_facet Isidoro Iván Cuesta
Pavel Michel Almaguer-Zaldivar
Jesús Manuel Alegre
author_sort Isidoro Iván Cuesta
title Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces
title_short Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces
title_full Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces
title_fullStr Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces
title_full_unstemmed Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces
title_sort mechanical behaviour of stamped aluminium alloy components by means of response surfaces
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2019-06-01
description In the automotive industry, the use of stamped aluminium alloy components has become a very common occurrence. For the appropriate design of these components, it is necessary to know how the manufacturing process affects the material properties. In the first place, high plastic strains (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#949;</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> </inline-formula>) can be generated during the stamping process, which can result in a change in the residual stress and mechanical properties in the plastically deformed areas. Furthermore, if a last coat of paint that is usually subjected to a thermal cycle, characterized by temperature (<inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula>) and exposure time (<inline-formula> <math display="inline"> <semantics> <mi>t</mi> </semantics> </math> </inline-formula>), is applied, it can also influence mechanical behaviour. Consequently, this paper studies how both processes affect the mechanical behaviour of an aluminium alloy of the 5000 series, commonly used in these types of components. In particular, the mechanical properties such as the yield stress at 0.2% (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#963;</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>), the ultimate tensile strength (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>) and the engineering strain at break (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>f</mi> </msub> </mrow> </semantics> </math> </inline-formula>) have been analysed. To achieve this, a response surface technique, based on the design of experiments, has been used. The response surfaces obtained allow for the prediction of mechanical properties <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#963;</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>f</mi> </msub> </mrow> </semantics> </math> </inline-formula> for any combination of values of <inline-formula> <math display="inline"> <semantics> <mi>t</mi> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#949;</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> </inline-formula>.
topic mechanical behaviour
stamped aluminium alloy components
response surface technique
design of experiments
url https://www.mdpi.com/1996-1944/12/11/1838
work_keys_str_mv AT isidoroivancuesta mechanicalbehaviourofstampedaluminiumalloycomponentsbymeansofresponsesurfaces
AT pavelmichelalmaguerzaldivar mechanicalbehaviourofstampedaluminiumalloycomponentsbymeansofresponsesurfaces
AT jesusmanuelalegre mechanicalbehaviourofstampedaluminiumalloycomponentsbymeansofresponsesurfaces
_version_ 1726010559820726272