Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces
In the automotive industry, the use of stamped aluminium alloy components has become a very common occurrence. For the appropriate design of these components, it is necessary to know how the manufacturing process affects the material properties. In the first place, high plastic strains (<inline-f...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-06-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/12/11/1838 |
id |
doaj-f63cd52a888848d89e4a3b8ef319db21 |
---|---|
record_format |
Article |
spelling |
doaj-f63cd52a888848d89e4a3b8ef319db212020-11-24T21:18:04ZengMDPI AGMaterials1996-19442019-06-011211183810.3390/ma12111838ma12111838Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response SurfacesIsidoro Iván Cuesta0Pavel Michel Almaguer-Zaldivar1Jesús Manuel Alegre2Structural Integrity Group, Universidad de Burgos, Avda. Cantabria s/n, 09006 Burgos, SpainCAD/CAM Study Center, University of Holguín, Ave XX Aniversario, 80100 Holguín, CubaStructural Integrity Group, Universidad de Burgos, Avda. Cantabria s/n, 09006 Burgos, SpainIn the automotive industry, the use of stamped aluminium alloy components has become a very common occurrence. For the appropriate design of these components, it is necessary to know how the manufacturing process affects the material properties. In the first place, high plastic strains (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>ε</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> </inline-formula>) can be generated during the stamping process, which can result in a change in the residual stress and mechanical properties in the plastically deformed areas. Furthermore, if a last coat of paint that is usually subjected to a thermal cycle, characterized by temperature (<inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula>) and exposure time (<inline-formula> <math display="inline"> <semantics> <mi>t</mi> </semantics> </math> </inline-formula>), is applied, it can also influence mechanical behaviour. Consequently, this paper studies how both processes affect the mechanical behaviour of an aluminium alloy of the 5000 series, commonly used in these types of components. In particular, the mechanical properties such as the yield stress at 0.2% (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>), the ultimate tensile strength (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>) and the engineering strain at break (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>f</mi> </msub> </mrow> </semantics> </math> </inline-formula>) have been analysed. To achieve this, a response surface technique, based on the design of experiments, has been used. The response surfaces obtained allow for the prediction of mechanical properties <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>f</mi> </msub> </mrow> </semantics> </math> </inline-formula> for any combination of values of <inline-formula> <math display="inline"> <semantics> <mi>t</mi> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>ε</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/1996-1944/12/11/1838mechanical behaviourstamped aluminium alloy componentsresponse surface techniquedesign of experiments |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Isidoro Iván Cuesta Pavel Michel Almaguer-Zaldivar Jesús Manuel Alegre |
spellingShingle |
Isidoro Iván Cuesta Pavel Michel Almaguer-Zaldivar Jesús Manuel Alegre Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces Materials mechanical behaviour stamped aluminium alloy components response surface technique design of experiments |
author_facet |
Isidoro Iván Cuesta Pavel Michel Almaguer-Zaldivar Jesús Manuel Alegre |
author_sort |
Isidoro Iván Cuesta |
title |
Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces |
title_short |
Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces |
title_full |
Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces |
title_fullStr |
Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces |
title_full_unstemmed |
Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces |
title_sort |
mechanical behaviour of stamped aluminium alloy components by means of response surfaces |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2019-06-01 |
description |
In the automotive industry, the use of stamped aluminium alloy components has become a very common occurrence. For the appropriate design of these components, it is necessary to know how the manufacturing process affects the material properties. In the first place, high plastic strains (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>ε</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> </inline-formula>) can be generated during the stamping process, which can result in a change in the residual stress and mechanical properties in the plastically deformed areas. Furthermore, if a last coat of paint that is usually subjected to a thermal cycle, characterized by temperature (<inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula>) and exposure time (<inline-formula> <math display="inline"> <semantics> <mi>t</mi> </semantics> </math> </inline-formula>), is applied, it can also influence mechanical behaviour. Consequently, this paper studies how both processes affect the mechanical behaviour of an aluminium alloy of the 5000 series, commonly used in these types of components. In particular, the mechanical properties such as the yield stress at 0.2% (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>), the ultimate tensile strength (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>) and the engineering strain at break (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>f</mi> </msub> </mrow> </semantics> </math> </inline-formula>) have been analysed. To achieve this, a response surface technique, based on the design of experiments, has been used. The response surfaces obtained allow for the prediction of mechanical properties <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>f</mi> </msub> </mrow> </semantics> </math> </inline-formula> for any combination of values of <inline-formula> <math display="inline"> <semantics> <mi>t</mi> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>ε</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> </inline-formula>. |
topic |
mechanical behaviour stamped aluminium alloy components response surface technique design of experiments |
url |
https://www.mdpi.com/1996-1944/12/11/1838 |
work_keys_str_mv |
AT isidoroivancuesta mechanicalbehaviourofstampedaluminiumalloycomponentsbymeansofresponsesurfaces AT pavelmichelalmaguerzaldivar mechanicalbehaviourofstampedaluminiumalloycomponentsbymeansofresponsesurfaces AT jesusmanuelalegre mechanicalbehaviourofstampedaluminiumalloycomponentsbymeansofresponsesurfaces |
_version_ |
1726010559820726272 |