Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines
Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques us...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-06-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/15/6/14241 |
id |
doaj-f63a85f9e87240d2a4e323f40ebee4c7 |
---|---|
record_format |
Article |
spelling |
doaj-f63a85f9e87240d2a4e323f40ebee4c72020-11-24T22:15:41ZengMDPI AGSensors1424-82202015-06-01156142411426010.3390/s150614241s150614241Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector MachinesLara del Val0Alberto Izquierdo-Fuente1Juan J. Villacorta2Mariano Raboso3Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Expresión Gráfica de la Ingeniería, Ingeniería Cartográfica, Geodesia y Fotogrametría, Ingeniería Mecánica e Ingeniería de los Procesos de Fabricación, Área de Ingeniería Mecánica, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, SpainDepartamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, Paseo Belén 15, 47011 Valladolid, SpainDepartamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, Paseo Belén 15, 47011 Valladolid, SpainInformática, Universidad Pontificia de Salamanca, Calle Compañía 5, 37002 Salamanca, SpainDrawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.http://www.mdpi.com/1424-8220/15/6/14241acoustic biometric systemacoustic imagespreprocessing techniquessupport vector machine |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lara del Val Alberto Izquierdo-Fuente Juan J. Villacorta Mariano Raboso |
spellingShingle |
Lara del Val Alberto Izquierdo-Fuente Juan J. Villacorta Mariano Raboso Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines Sensors acoustic biometric system acoustic images preprocessing techniques support vector machine |
author_facet |
Lara del Val Alberto Izquierdo-Fuente Juan J. Villacorta Mariano Raboso |
author_sort |
Lara del Val |
title |
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines |
title_short |
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines |
title_full |
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines |
title_fullStr |
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines |
title_full_unstemmed |
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines |
title_sort |
acoustic biometric system based on preprocessing techniques and linear support vector machines |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2015-06-01 |
description |
Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. |
topic |
acoustic biometric system acoustic images preprocessing techniques support vector machine |
url |
http://www.mdpi.com/1424-8220/15/6/14241 |
work_keys_str_mv |
AT laradelval acousticbiometricsystembasedonpreprocessingtechniquesandlinearsupportvectormachines AT albertoizquierdofuente acousticbiometricsystembasedonpreprocessingtechniquesandlinearsupportvectormachines AT juanjvillacorta acousticbiometricsystembasedonpreprocessingtechniquesandlinearsupportvectormachines AT marianoraboso acousticbiometricsystembasedonpreprocessingtechniquesandlinearsupportvectormachines |
_version_ |
1725793838687059968 |