Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques us...

Full description

Bibliographic Details
Main Authors: Lara del Val, Alberto Izquierdo-Fuente, Juan J. Villacorta, Mariano Raboso
Format: Article
Language:English
Published: MDPI AG 2015-06-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/15/6/14241
id doaj-f63a85f9e87240d2a4e323f40ebee4c7
record_format Article
spelling doaj-f63a85f9e87240d2a4e323f40ebee4c72020-11-24T22:15:41ZengMDPI AGSensors1424-82202015-06-01156142411426010.3390/s150614241s150614241Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector MachinesLara del Val0Alberto Izquierdo-Fuente1Juan J. Villacorta2Mariano Raboso3Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Expresión Gráfica de la Ingeniería, Ingeniería Cartográfica, Geodesia y Fotogrametría, Ingeniería Mecánica e Ingeniería de los Procesos de Fabricación, Área de Ingeniería Mecánica, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, SpainDepartamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, Paseo Belén 15, 47011 Valladolid, SpainDepartamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, Paseo Belén 15, 47011 Valladolid, SpainInformática, Universidad Pontificia de Salamanca, Calle Compañía 5, 37002 Salamanca, SpainDrawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.http://www.mdpi.com/1424-8220/15/6/14241acoustic biometric systemacoustic imagespreprocessing techniquessupport vector machine
collection DOAJ
language English
format Article
sources DOAJ
author Lara del Val
Alberto Izquierdo-Fuente
Juan J. Villacorta
Mariano Raboso
spellingShingle Lara del Val
Alberto Izquierdo-Fuente
Juan J. Villacorta
Mariano Raboso
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines
Sensors
acoustic biometric system
acoustic images
preprocessing techniques
support vector machine
author_facet Lara del Val
Alberto Izquierdo-Fuente
Juan J. Villacorta
Mariano Raboso
author_sort Lara del Val
title Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines
title_short Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines
title_full Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines
title_fullStr Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines
title_full_unstemmed Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines
title_sort acoustic biometric system based on preprocessing techniques and linear support vector machines
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2015-06-01
description Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.
topic acoustic biometric system
acoustic images
preprocessing techniques
support vector machine
url http://www.mdpi.com/1424-8220/15/6/14241
work_keys_str_mv AT laradelval acousticbiometricsystembasedonpreprocessingtechniquesandlinearsupportvectormachines
AT albertoizquierdofuente acousticbiometricsystembasedonpreprocessingtechniquesandlinearsupportvectormachines
AT juanjvillacorta acousticbiometricsystembasedonpreprocessingtechniquesandlinearsupportvectormachines
AT marianoraboso acousticbiometricsystembasedonpreprocessingtechniquesandlinearsupportvectormachines
_version_ 1725793838687059968