Equivariance, Variational Principles, and the Feynman Integral

We argue that the variational calculus leading to Euler's equations and Noether's theorem can be replaced by equivariance and invariance conditions avoiding the action integral. We also speculate about the origin of Lagrangian theories in physics and their connection to Feynman's inte...

Full description

Bibliographic Details
Main Author: George Svetlichny
Format: Article
Language:English
Published: National Academy of Science of Ukraine 2008-03-01
Series:Symmetry, Integrability and Geometry: Methods and Applications
Subjects:
Online Access:http://www.emis.de/journals/SIGMA/2008/032/
id doaj-f6331ac2fa154fa09412a15b88abfbe0
record_format Article
spelling doaj-f6331ac2fa154fa09412a15b88abfbe02020-11-24T23:23:57ZengNational Academy of Science of UkraineSymmetry, Integrability and Geometry: Methods and Applications1815-06592008-03-014032Equivariance, Variational Principles, and the Feynman IntegralGeorge SvetlichnyWe argue that the variational calculus leading to Euler's equations and Noether's theorem can be replaced by equivariance and invariance conditions avoiding the action integral. We also speculate about the origin of Lagrangian theories in physics and their connection to Feynman's integral.http://www.emis.de/journals/SIGMA/2008/032/Lagrangianscalculus of variationsEuler's equationsNoether's theoremequivarianceFeynman's integral
collection DOAJ
language English
format Article
sources DOAJ
author George Svetlichny
spellingShingle George Svetlichny
Equivariance, Variational Principles, and the Feynman Integral
Symmetry, Integrability and Geometry: Methods and Applications
Lagrangians
calculus of variations
Euler's equations
Noether's theorem
equivariance
Feynman's integral
author_facet George Svetlichny
author_sort George Svetlichny
title Equivariance, Variational Principles, and the Feynman Integral
title_short Equivariance, Variational Principles, and the Feynman Integral
title_full Equivariance, Variational Principles, and the Feynman Integral
title_fullStr Equivariance, Variational Principles, and the Feynman Integral
title_full_unstemmed Equivariance, Variational Principles, and the Feynman Integral
title_sort equivariance, variational principles, and the feynman integral
publisher National Academy of Science of Ukraine
series Symmetry, Integrability and Geometry: Methods and Applications
issn 1815-0659
publishDate 2008-03-01
description We argue that the variational calculus leading to Euler's equations and Noether's theorem can be replaced by equivariance and invariance conditions avoiding the action integral. We also speculate about the origin of Lagrangian theories in physics and their connection to Feynman's integral.
topic Lagrangians
calculus of variations
Euler's equations
Noether's theorem
equivariance
Feynman's integral
url http://www.emis.de/journals/SIGMA/2008/032/
work_keys_str_mv AT georgesvetlichny equivariancevariationalprinciplesandthefeynmanintegral
_version_ 1725562647901896704