Vanillic Acid Suppresses HIF-1α Expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK Pathways in Human Colon Cancer HCT116 Cells

Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tumor adaptation to microenvironmental hypoxia, and it also exerts important roles in angiogenesis and tumor development. Vanillic acid is a dietary phenolic compound reported to exhibit anticancer properties. However, the mechanisms by whic...

Full description

Bibliographic Details
Main Authors: Jingli Gong, Shengxue Zhou, Shihai Yang
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/20/3/465
id doaj-f61e56585a09444ea260199c8aa0e2a0
record_format Article
spelling doaj-f61e56585a09444ea260199c8aa0e2a02020-11-25T02:49:54ZengMDPI AGInternational Journal of Molecular Sciences1422-00672019-01-0120346510.3390/ijms20030465ijms20030465Vanillic Acid Suppresses HIF-1α Expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK Pathways in Human Colon Cancer HCT116 CellsJingli Gong0Shengxue Zhou1Shihai Yang2College of Chinese Medicine, Jilin Agricultural University, Changchun City 132000, ChinaCollege of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin City 132101, ChinaCollege of Chinese Medicine, Jilin Agricultural University, Changchun City 132000, ChinaHypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tumor adaptation to microenvironmental hypoxia, and it also exerts important roles in angiogenesis and tumor development. Vanillic acid is a dietary phenolic compound reported to exhibit anticancer properties. However, the mechanisms by which vanillic acid inhibits tumor growth are not fully understood. Here, we investigated the effect of vanillic acid on HIF-1α activation. Vanillic acid significantly inhibits HIF-1α expression induced by hypoxia in various human cancer cell lines. Further analysis revealed that vanillic acid inhibited HIF-1α protein synthesis. Neither the HIF-1α protein degradation rate nor the steady-state HIF-1α mRNA levels were affected by vanillic acid. Moreover, vanillic acid inhibited HIF-1α expression by suppressing mammalian target of rapamycin/p70 ribosomal protein S6 kinase/eukaryotic initiation factor 4E-binding protein-1 and Raf/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathways. We found that vanillic acid dose-dependently inhibited VEGF and EPO protein expressions and disrupted tube formation. The results suggest that vanillic acid effectively inhibits angiogenesis. Flow cytometry analysis demonstrated that vanillic acid significantly induced G1 phase arrest and inhibited the proliferation of human colon cancer HCT116 cells. In vivo experiments confirmed that vanillic acid treatment caused significant inhibition of tumor growth in a xenografted tumor model. These studies reveal that vanillic acid is an effective inhibitor of HIF-1α and provides new perspectives into the mechanism of its antitumor activity.https://www.mdpi.com/1422-0067/20/3/465vanillic acidHIF-1αangiogenesisproliferationantitumor activity
collection DOAJ
language English
format Article
sources DOAJ
author Jingli Gong
Shengxue Zhou
Shihai Yang
spellingShingle Jingli Gong
Shengxue Zhou
Shihai Yang
Vanillic Acid Suppresses HIF-1α Expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK Pathways in Human Colon Cancer HCT116 Cells
International Journal of Molecular Sciences
vanillic acid
HIF-1α
angiogenesis
proliferation
antitumor activity
author_facet Jingli Gong
Shengxue Zhou
Shihai Yang
author_sort Jingli Gong
title Vanillic Acid Suppresses HIF-1α Expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK Pathways in Human Colon Cancer HCT116 Cells
title_short Vanillic Acid Suppresses HIF-1α Expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK Pathways in Human Colon Cancer HCT116 Cells
title_full Vanillic Acid Suppresses HIF-1α Expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK Pathways in Human Colon Cancer HCT116 Cells
title_fullStr Vanillic Acid Suppresses HIF-1α Expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK Pathways in Human Colon Cancer HCT116 Cells
title_full_unstemmed Vanillic Acid Suppresses HIF-1α Expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK Pathways in Human Colon Cancer HCT116 Cells
title_sort vanillic acid suppresses hif-1α expression via inhibition of mtor/p70s6k/4e-bp1 and raf/mek/erk pathways in human colon cancer hct116 cells
publisher MDPI AG
series International Journal of Molecular Sciences
issn 1422-0067
publishDate 2019-01-01
description Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tumor adaptation to microenvironmental hypoxia, and it also exerts important roles in angiogenesis and tumor development. Vanillic acid is a dietary phenolic compound reported to exhibit anticancer properties. However, the mechanisms by which vanillic acid inhibits tumor growth are not fully understood. Here, we investigated the effect of vanillic acid on HIF-1α activation. Vanillic acid significantly inhibits HIF-1α expression induced by hypoxia in various human cancer cell lines. Further analysis revealed that vanillic acid inhibited HIF-1α protein synthesis. Neither the HIF-1α protein degradation rate nor the steady-state HIF-1α mRNA levels were affected by vanillic acid. Moreover, vanillic acid inhibited HIF-1α expression by suppressing mammalian target of rapamycin/p70 ribosomal protein S6 kinase/eukaryotic initiation factor 4E-binding protein-1 and Raf/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathways. We found that vanillic acid dose-dependently inhibited VEGF and EPO protein expressions and disrupted tube formation. The results suggest that vanillic acid effectively inhibits angiogenesis. Flow cytometry analysis demonstrated that vanillic acid significantly induced G1 phase arrest and inhibited the proliferation of human colon cancer HCT116 cells. In vivo experiments confirmed that vanillic acid treatment caused significant inhibition of tumor growth in a xenografted tumor model. These studies reveal that vanillic acid is an effective inhibitor of HIF-1α and provides new perspectives into the mechanism of its antitumor activity.
topic vanillic acid
HIF-1α
angiogenesis
proliferation
antitumor activity
url https://www.mdpi.com/1422-0067/20/3/465
work_keys_str_mv AT jingligong vanillicacidsuppresseshif1aexpressionviainhibitionofmtorp70s6k4ebp1andrafmekerkpathwaysinhumancoloncancerhct116cells
AT shengxuezhou vanillicacidsuppresseshif1aexpressionviainhibitionofmtorp70s6k4ebp1andrafmekerkpathwaysinhumancoloncancerhct116cells
AT shihaiyang vanillicacidsuppresseshif1aexpressionviainhibitionofmtorp70s6k4ebp1andrafmekerkpathwaysinhumancoloncancerhct116cells
_version_ 1724741571330441216