Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation
The authors present a method of numerical approximation of the fixed point of an operator, specifically the integral one associated with a nonlinear Fredholm integral equation, that uses strongly the properties of a classical Schauder basis in the Banach space C([a,b]×[a,b]).
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://dx.doi.org/10.1155/2009/735638 |
id |
doaj-f5f4641c7b4c4c4c9c8665466851b424 |
---|---|
record_format |
Article |
spelling |
doaj-f5f4641c7b4c4c4c9c8665466851b4242020-11-24T21:41:08ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122009-01-01200910.1155/2009/735638Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral EquationM. I. BerenguerM. V. Fernández MuñozA. I. Garralda GuillemM. Ruiz GalánThe authors present a method of numerical approximation of the fixed point of an operator, specifically the integral one associated with a nonlinear Fredholm integral equation, that uses strongly the properties of a classical Schauder basis in the Banach space C([a,b]×[a,b]). http://dx.doi.org/10.1155/2009/735638 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. I. Berenguer M. V. Fernández Muñoz A. I. Garralda Guillem M. Ruiz Galán |
spellingShingle |
M. I. Berenguer M. V. Fernández Muñoz A. I. Garralda Guillem M. Ruiz Galán Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation Fixed Point Theory and Applications |
author_facet |
M. I. Berenguer M. V. Fernández Muñoz A. I. Garralda Guillem M. Ruiz Galán |
author_sort |
M. I. Berenguer |
title |
Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation |
title_short |
Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation |
title_full |
Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation |
title_fullStr |
Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation |
title_full_unstemmed |
Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation |
title_sort |
numerical treatment of fixed point applied to the nonlinear fredholm integral equation |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2009-01-01 |
description |
The authors present a method of numerical approximation of the fixed point of an operator, specifically the integral one associated with a nonlinear Fredholm integral equation, that uses strongly the properties of a classical Schauder basis in the Banach space C([a,b]×[a,b]). |
url |
http://dx.doi.org/10.1155/2009/735638 |
work_keys_str_mv |
AT miberenguer numericaltreatmentoffixedpointappliedtothenonlinearfredholmintegralequation AT mvfernamp225ndezmuamp241oz numericaltreatmentoffixedpointappliedtothenonlinearfredholmintegralequation AT aigarraldaguillem numericaltreatmentoffixedpointappliedtothenonlinearfredholmintegralequation AT mruizgalamp225n numericaltreatmentoffixedpointappliedtothenonlinearfredholmintegralequation |
_version_ |
1716667085093863424 |