RESIDUAL SHUFFLING CONVOLUTIONAL NEURAL NETWORKS FOR DEEP SEMANTIC IMAGE SEGMENTATION USING MULTI-MODAL DATA
In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided se...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-05-01
|
Series: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2/65/2018/isprs-annals-IV-2-65-2018.pdf |
id |
doaj-f5be06d983774edcad144ab9e8ce470e |
---|---|
record_format |
Article |
spelling |
doaj-f5be06d983774edcad144ab9e8ce470e2020-11-25T02:31:02ZengCopernicus PublicationsISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences2194-90422194-90502018-05-01IV-2657210.5194/isprs-annals-IV-2-65-2018RESIDUAL SHUFFLING CONVOLUTIONAL NEURAL NETWORKS FOR DEEP SEMANTIC IMAGE SEGMENTATION USING MULTI-MODAL DATAK. Chen0K. Chen1M. Weinmann2X. Gao3M. Yan4S. Hinz5B. Jutzi6M. Weinmann7Key Laboratory of Spatial Information Processing and Application System Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, P.R. ChinaUniversity of Chinese Academy of Sciences, Beijing, P.R. ChinaInstitute of Computer Science II, University of Bonn, Bonn, GermanyKey Laboratory of Spatial Information Processing and Application System Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, P.R. ChinaKey Laboratory of Spatial Information Processing and Application System Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, P.R. ChinaInstitute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, GermanyIn this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided separately and in different combinations as input to a modern deep learning framework. The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation.https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2/65/2018/isprs-annals-IV-2-65-2018.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
K. Chen K. Chen M. Weinmann X. Gao M. Yan S. Hinz B. Jutzi M. Weinmann |
spellingShingle |
K. Chen K. Chen M. Weinmann X. Gao M. Yan S. Hinz B. Jutzi M. Weinmann RESIDUAL SHUFFLING CONVOLUTIONAL NEURAL NETWORKS FOR DEEP SEMANTIC IMAGE SEGMENTATION USING MULTI-MODAL DATA ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
K. Chen K. Chen M. Weinmann X. Gao M. Yan S. Hinz B. Jutzi M. Weinmann |
author_sort |
K. Chen |
title |
RESIDUAL SHUFFLING CONVOLUTIONAL NEURAL NETWORKS FOR DEEP SEMANTIC IMAGE SEGMENTATION USING MULTI-MODAL DATA |
title_short |
RESIDUAL SHUFFLING CONVOLUTIONAL NEURAL NETWORKS FOR DEEP SEMANTIC IMAGE SEGMENTATION USING MULTI-MODAL DATA |
title_full |
RESIDUAL SHUFFLING CONVOLUTIONAL NEURAL NETWORKS FOR DEEP SEMANTIC IMAGE SEGMENTATION USING MULTI-MODAL DATA |
title_fullStr |
RESIDUAL SHUFFLING CONVOLUTIONAL NEURAL NETWORKS FOR DEEP SEMANTIC IMAGE SEGMENTATION USING MULTI-MODAL DATA |
title_full_unstemmed |
RESIDUAL SHUFFLING CONVOLUTIONAL NEURAL NETWORKS FOR DEEP SEMANTIC IMAGE SEGMENTATION USING MULTI-MODAL DATA |
title_sort |
residual shuffling convolutional neural networks for deep semantic image segmentation using multi-modal data |
publisher |
Copernicus Publications |
series |
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
2194-9042 2194-9050 |
publishDate |
2018-05-01 |
description |
In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided separately and in different combinations as input to a modern deep learning framework. The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation. |
url |
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2/65/2018/isprs-annals-IV-2-65-2018.pdf |
work_keys_str_mv |
AT kchen residualshufflingconvolutionalneuralnetworksfordeepsemanticimagesegmentationusingmultimodaldata AT kchen residualshufflingconvolutionalneuralnetworksfordeepsemanticimagesegmentationusingmultimodaldata AT mweinmann residualshufflingconvolutionalneuralnetworksfordeepsemanticimagesegmentationusingmultimodaldata AT xgao residualshufflingconvolutionalneuralnetworksfordeepsemanticimagesegmentationusingmultimodaldata AT myan residualshufflingconvolutionalneuralnetworksfordeepsemanticimagesegmentationusingmultimodaldata AT shinz residualshufflingconvolutionalneuralnetworksfordeepsemanticimagesegmentationusingmultimodaldata AT bjutzi residualshufflingconvolutionalneuralnetworksfordeepsemanticimagesegmentationusingmultimodaldata AT mweinmann residualshufflingconvolutionalneuralnetworksfordeepsemanticimagesegmentationusingmultimodaldata |
_version_ |
1724825805951860736 |