An Introduction to the Generalized Fractional Integration
The purpose of the present paper is to investigate the generalizedfractional integration of the generalized M-series.Some results derived by Saxena and Saigo [13], Samko, Kilbas and Marichev [15] are the special cases of the main results derived in this paper.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2012-01-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/14760/7814 |
id |
doaj-f5a91a2941134dfab32454504c6515d1 |
---|---|
record_format |
Article |
spelling |
doaj-f5a91a2941134dfab32454504c6515d12020-11-25T00:26:25ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882012-01-013028590An Introduction to the Generalized Fractional IntegrationKishan SharmaThe purpose of the present paper is to investigate the generalizedfractional integration of the generalized M-series.Some results derived by Saxena and Saigo [13], Samko, Kilbas and Marichev [15] are the special cases of the main results derived in this paper.http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/14760/7814Wright generalized hypergeometric functionRiemann- Liou- ville fractional integral operatorsgeneralized Riemann-Liouville and Erdlyi-Kober fractional integral operatorsgeneralized M-series. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kishan Sharma |
spellingShingle |
Kishan Sharma An Introduction to the Generalized Fractional Integration Boletim da Sociedade Paranaense de Matemática Wright generalized hypergeometric function Riemann- Liou- ville fractional integral operators generalized Riemann-Liouville and Erdlyi-Kober fractional integral operators generalized M-series. |
author_facet |
Kishan Sharma |
author_sort |
Kishan Sharma |
title |
An Introduction to the Generalized Fractional Integration |
title_short |
An Introduction to the Generalized Fractional Integration |
title_full |
An Introduction to the Generalized Fractional Integration |
title_fullStr |
An Introduction to the Generalized Fractional Integration |
title_full_unstemmed |
An Introduction to the Generalized Fractional Integration |
title_sort |
introduction to the generalized fractional integration |
publisher |
Sociedade Brasileira de Matemática |
series |
Boletim da Sociedade Paranaense de Matemática |
issn |
0037-8712 2175-1188 |
publishDate |
2012-01-01 |
description |
The purpose of the present paper is to investigate the generalizedfractional integration of the generalized M-series.Some results derived by Saxena and Saigo [13], Samko, Kilbas and Marichev [15] are the special cases of the main results derived in this paper. |
topic |
Wright generalized hypergeometric function Riemann- Liou- ville fractional integral operators generalized Riemann-Liouville and Erdlyi-Kober fractional integral operators generalized M-series. |
url |
http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/14760/7814 |
work_keys_str_mv |
AT kishansharma anintroductiontothegeneralizedfractionalintegration AT kishansharma introductiontothegeneralizedfractionalintegration |
_version_ |
1725344216453742592 |