Single-Cell Transcriptomic Analysis Reveals Developmental Relationships and Specific Markers of Mouse Periodontium Cellular Subsets
The periodontium is essential for supporting the functionality of the tooth, composed of diversity of mineralized and non-mineralized tissues such as the cementum, the periodontal ligament (PDL) and the alveolar bone. The periodontium is developmentally derived from the dental follicle (DF), a fibro...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-08-01
|
Series: | Frontiers in Dental Medicine |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fdmed.2021.679937/full |
id |
doaj-f5919cf322684250884bea115ad1a71d |
---|---|
record_format |
Article |
spelling |
doaj-f5919cf322684250884bea115ad1a71d2021-08-12T06:37:40ZengFrontiers Media S.A.Frontiers in Dental Medicine2673-49152021-08-01210.3389/fdmed.2021.679937679937Single-Cell Transcriptomic Analysis Reveals Developmental Relationships and Specific Markers of Mouse Periodontium Cellular SubsetsMizuki Nagata0Angel Ka Yan Chu1Noriaki Ono2Joshua D. Welch3Wanida Ono4Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United StatesDepartment of Computational Medicine and Bioinformatics, Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, United StatesDepartment of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United StatesDepartment of Computational Medicine and Bioinformatics, Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, United StatesDepartment of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United StatesThe periodontium is essential for supporting the functionality of the tooth, composed of diversity of mineralized and non-mineralized tissues such as the cementum, the periodontal ligament (PDL) and the alveolar bone. The periodontium is developmentally derived from the dental follicle (DF), a fibrous tissue surrounding the developing tooth bud. We previously showed through in vivo lineage-tracing experiments that DF contains mesenchymal progenitor cells expressing parathyroid hormone-related protein (PTHrP), which give rise to cells forming the periodontal attachment apparatus in a manner regulated by autocrine signaling through the PTH/PTHrP receptor. However, the developmental relationships between PTHrP+ DF cells and diverse cell populations constituting the periodontium remain undefined. Here, we performed single-cell RNA-sequencing (scRNA-seq) analyses of cells in the periodontium by integrating the two datasets, i.e. PTHrP-mCherry+ DF cells at P6 and 2.3kb Col1a1 promoter-driven GFP+ periodontal cells at P25 that include descendants of PTHrP+ DF cells, cementoblasts, osteoblasts and periodontal ligament cells. This integrative scRNA-seq analysis revealed heterogeneity of cells of the periodontium and their cell type-specific markers, as well as their relationships with DF cells. Most importantly, our analysis identified a cementoblast-specific metagene that discriminate cementoblasts from alveolar bone osteoblasts, including Pthlh (encoding PTHrP) and Tubb3. RNA velocity analysis indicated that cementoblasts were directly derived from PTHrP+ DF cells in the early developmental stage and did not interconvert with other cell types. Further, CellPhoneDB cell-cell communication analysis indicated that PTHrP derived from cementoblasts acts on diversity of cells in the periodontium in an autocrine and paracrine manner. Collectively, our findings provide insights into the lineage hierarchy and intercellular interactions of cells in the periodontium at a single-cell level, aiding to understand cellular and molecular basis of periodontal tissue formation.https://www.frontiersin.org/articles/10.3389/fdmed.2021.679937/fullmesenchymal progenitor cellsparathyroid hormone-related proteindental follicleperiodontiumsingle cell analysismouse genetic models |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mizuki Nagata Angel Ka Yan Chu Noriaki Ono Joshua D. Welch Wanida Ono |
spellingShingle |
Mizuki Nagata Angel Ka Yan Chu Noriaki Ono Joshua D. Welch Wanida Ono Single-Cell Transcriptomic Analysis Reveals Developmental Relationships and Specific Markers of Mouse Periodontium Cellular Subsets Frontiers in Dental Medicine mesenchymal progenitor cells parathyroid hormone-related protein dental follicle periodontium single cell analysis mouse genetic models |
author_facet |
Mizuki Nagata Angel Ka Yan Chu Noriaki Ono Joshua D. Welch Wanida Ono |
author_sort |
Mizuki Nagata |
title |
Single-Cell Transcriptomic Analysis Reveals Developmental Relationships and Specific Markers of Mouse Periodontium Cellular Subsets |
title_short |
Single-Cell Transcriptomic Analysis Reveals Developmental Relationships and Specific Markers of Mouse Periodontium Cellular Subsets |
title_full |
Single-Cell Transcriptomic Analysis Reveals Developmental Relationships and Specific Markers of Mouse Periodontium Cellular Subsets |
title_fullStr |
Single-Cell Transcriptomic Analysis Reveals Developmental Relationships and Specific Markers of Mouse Periodontium Cellular Subsets |
title_full_unstemmed |
Single-Cell Transcriptomic Analysis Reveals Developmental Relationships and Specific Markers of Mouse Periodontium Cellular Subsets |
title_sort |
single-cell transcriptomic analysis reveals developmental relationships and specific markers of mouse periodontium cellular subsets |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Dental Medicine |
issn |
2673-4915 |
publishDate |
2021-08-01 |
description |
The periodontium is essential for supporting the functionality of the tooth, composed of diversity of mineralized and non-mineralized tissues such as the cementum, the periodontal ligament (PDL) and the alveolar bone. The periodontium is developmentally derived from the dental follicle (DF), a fibrous tissue surrounding the developing tooth bud. We previously showed through in vivo lineage-tracing experiments that DF contains mesenchymal progenitor cells expressing parathyroid hormone-related protein (PTHrP), which give rise to cells forming the periodontal attachment apparatus in a manner regulated by autocrine signaling through the PTH/PTHrP receptor. However, the developmental relationships between PTHrP+ DF cells and diverse cell populations constituting the periodontium remain undefined. Here, we performed single-cell RNA-sequencing (scRNA-seq) analyses of cells in the periodontium by integrating the two datasets, i.e. PTHrP-mCherry+ DF cells at P6 and 2.3kb Col1a1 promoter-driven GFP+ periodontal cells at P25 that include descendants of PTHrP+ DF cells, cementoblasts, osteoblasts and periodontal ligament cells. This integrative scRNA-seq analysis revealed heterogeneity of cells of the periodontium and their cell type-specific markers, as well as their relationships with DF cells. Most importantly, our analysis identified a cementoblast-specific metagene that discriminate cementoblasts from alveolar bone osteoblasts, including Pthlh (encoding PTHrP) and Tubb3. RNA velocity analysis indicated that cementoblasts were directly derived from PTHrP+ DF cells in the early developmental stage and did not interconvert with other cell types. Further, CellPhoneDB cell-cell communication analysis indicated that PTHrP derived from cementoblasts acts on diversity of cells in the periodontium in an autocrine and paracrine manner. Collectively, our findings provide insights into the lineage hierarchy and intercellular interactions of cells in the periodontium at a single-cell level, aiding to understand cellular and molecular basis of periodontal tissue formation. |
topic |
mesenchymal progenitor cells parathyroid hormone-related protein dental follicle periodontium single cell analysis mouse genetic models |
url |
https://www.frontiersin.org/articles/10.3389/fdmed.2021.679937/full |
work_keys_str_mv |
AT mizukinagata singlecelltranscriptomicanalysisrevealsdevelopmentalrelationshipsandspecificmarkersofmouseperiodontiumcellularsubsets AT angelkayanchu singlecelltranscriptomicanalysisrevealsdevelopmentalrelationshipsandspecificmarkersofmouseperiodontiumcellularsubsets AT noriakiono singlecelltranscriptomicanalysisrevealsdevelopmentalrelationshipsandspecificmarkersofmouseperiodontiumcellularsubsets AT joshuadwelch singlecelltranscriptomicanalysisrevealsdevelopmentalrelationshipsandspecificmarkersofmouseperiodontiumcellularsubsets AT wanidaono singlecelltranscriptomicanalysisrevealsdevelopmentalrelationshipsandspecificmarkersofmouseperiodontiumcellularsubsets |
_version_ |
1721209825995522048 |