Um estudo sobre o tamanho e poder dos testes t-Student e Wilcoxon = A study about the size and power of t-Student and Wilcoxon tests

Um dos problemas mais comuns em estatística consiste em testar a hipótese H0 : m =m0 versus a alternativa H1 : m ¹m0 , em que m0 é algum valor específico do parâmetro m . A partir de uma amostra aleatória, sob a suposição de que a mesma é proveniente de uma distribuição Normal com média m e desvio p...

Full description

Bibliographic Details
Main Authors: Josmar Mazucheli, Emílio Augusto Coelho Barros
Format: Article
Language:English
Published: Universidade Estadual de Maringá 2005-01-01
Series:Acta Scientiarum: Technology
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1495/853
id doaj-f590a252d7c442509a5f7dcad999f0c9
record_format Article
spelling doaj-f590a252d7c442509a5f7dcad999f0c92020-11-25T01:07:24ZengUniversidade Estadual de MaringáActa Scientiarum: Technology1807-86642005-01-012712332Um estudo sobre o tamanho e poder dos testes t-Student e Wilcoxon = A study about the size and power of t-Student and Wilcoxon testsJosmar MazucheliEmílio Augusto Coelho BarrosUm dos problemas mais comuns em estatística consiste em testar a hipótese H0 : m =m0 versus a alternativa H1 : m ¹m0 , em que m0 é algum valor específico do parâmetro m . A partir de uma amostra aleatória, sob a suposição de que a mesma é proveniente de uma distribuição Normal com média m e desvio padrão s , ambos desconhecidos, pode-se aplicar o bem conhecido teste t-Student. Como alternativa, sob a suposição de simetria da distribuição dos dados, pode-se utilizar o teste não-paramétrico conhecido na literatura como teste de Wilcoxon (Conover, 1971). Neste artigo, é conduzido um estudo de simulação Monte-Carlo com o intuito de avaliar o tamanho e o poder dos testes t-Student e de Wilcoxon sob diferentes instâncias. Para o cálculo do tamanho de ambos os testes, foram realizadas B = 100 .000 simulações Monte-Carlo com 10 diferentes tamanhos de amostras, n = 10, 20, ... , 90, 100. Cada uma das B = 100 .000 amostras foram geradas das distribuições Normal, Laplace, Uniforme,t-Student e Logística sob a hipótese nula, sem perda de generalizades, com m = 0. Para o cálculo do poder, novamente B = 100.000 amostras foram geradas sob a hipótese alternativa com 1.0, 0.9, ,0.9,1.0 0 m = - - K .<br><br>A typical problem in statistics data analysis consists in testing a null hypothesis H0 : m =m0 versus an alternative H1 : m ¹m0 , where m0 is some specific value of the true parameter m . From a randomsample with normal distribution with mean m and variance s 2 , both unknown, we might use the well known t-student test. As an alternative to the usual t-student test, under the symmetric supposition, we can use the nonparametric Wilcoxon on test (Conover, 1971). In this paper, a Monte-Carlo simulation study was conducted to calculate the empirical size and power of the t-student and Wilcoxon tests. In this study, several instances were considered. For the size of both tests, we considered sample sizes equal to n=10,20,K,90,100 simulated from Normal, Laplace, Uniform, t-Student and Logistic distributions, under the null hypothesis with m = 0 . In the power study, from the same sample sizes and for all distributions, random samples were simulated from the alternative hypothesis consideringm 0 = -1.0,-0.9,K, 0.9,1.0 .http://periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1495/853tamanho do testepoder do testesimulação Monte-Carloteste t-Studentteste de Wilcxonempirical sizepower of testsMonte-Carlo simulationt-Student testWilcoxon test
collection DOAJ
language English
format Article
sources DOAJ
author Josmar Mazucheli
Emílio Augusto Coelho Barros
spellingShingle Josmar Mazucheli
Emílio Augusto Coelho Barros
Um estudo sobre o tamanho e poder dos testes t-Student e Wilcoxon = A study about the size and power of t-Student and Wilcoxon tests
Acta Scientiarum: Technology
tamanho do teste
poder do teste
simulação Monte-Carlo
teste t-Student
teste de Wilcxon
empirical size
power of tests
Monte-Carlo simulation
t-Student test
Wilcoxon test
author_facet Josmar Mazucheli
Emílio Augusto Coelho Barros
author_sort Josmar Mazucheli
title Um estudo sobre o tamanho e poder dos testes t-Student e Wilcoxon = A study about the size and power of t-Student and Wilcoxon tests
title_short Um estudo sobre o tamanho e poder dos testes t-Student e Wilcoxon = A study about the size and power of t-Student and Wilcoxon tests
title_full Um estudo sobre o tamanho e poder dos testes t-Student e Wilcoxon = A study about the size and power of t-Student and Wilcoxon tests
title_fullStr Um estudo sobre o tamanho e poder dos testes t-Student e Wilcoxon = A study about the size and power of t-Student and Wilcoxon tests
title_full_unstemmed Um estudo sobre o tamanho e poder dos testes t-Student e Wilcoxon = A study about the size and power of t-Student and Wilcoxon tests
title_sort um estudo sobre o tamanho e poder dos testes t-student e wilcoxon = a study about the size and power of t-student and wilcoxon tests
publisher Universidade Estadual de Maringá
series Acta Scientiarum: Technology
issn 1807-8664
publishDate 2005-01-01
description Um dos problemas mais comuns em estatística consiste em testar a hipótese H0 : m =m0 versus a alternativa H1 : m ¹m0 , em que m0 é algum valor específico do parâmetro m . A partir de uma amostra aleatória, sob a suposição de que a mesma é proveniente de uma distribuição Normal com média m e desvio padrão s , ambos desconhecidos, pode-se aplicar o bem conhecido teste t-Student. Como alternativa, sob a suposição de simetria da distribuição dos dados, pode-se utilizar o teste não-paramétrico conhecido na literatura como teste de Wilcoxon (Conover, 1971). Neste artigo, é conduzido um estudo de simulação Monte-Carlo com o intuito de avaliar o tamanho e o poder dos testes t-Student e de Wilcoxon sob diferentes instâncias. Para o cálculo do tamanho de ambos os testes, foram realizadas B = 100 .000 simulações Monte-Carlo com 10 diferentes tamanhos de amostras, n = 10, 20, ... , 90, 100. Cada uma das B = 100 .000 amostras foram geradas das distribuições Normal, Laplace, Uniforme,t-Student e Logística sob a hipótese nula, sem perda de generalizades, com m = 0. Para o cálculo do poder, novamente B = 100.000 amostras foram geradas sob a hipótese alternativa com 1.0, 0.9, ,0.9,1.0 0 m = - - K .<br><br>A typical problem in statistics data analysis consists in testing a null hypothesis H0 : m =m0 versus an alternative H1 : m ¹m0 , where m0 is some specific value of the true parameter m . From a randomsample with normal distribution with mean m and variance s 2 , both unknown, we might use the well known t-student test. As an alternative to the usual t-student test, under the symmetric supposition, we can use the nonparametric Wilcoxon on test (Conover, 1971). In this paper, a Monte-Carlo simulation study was conducted to calculate the empirical size and power of the t-student and Wilcoxon tests. In this study, several instances were considered. For the size of both tests, we considered sample sizes equal to n=10,20,K,90,100 simulated from Normal, Laplace, Uniform, t-Student and Logistic distributions, under the null hypothesis with m = 0 . In the power study, from the same sample sizes and for all distributions, random samples were simulated from the alternative hypothesis consideringm 0 = -1.0,-0.9,K, 0.9,1.0 .
topic tamanho do teste
poder do teste
simulação Monte-Carlo
teste t-Student
teste de Wilcxon
empirical size
power of tests
Monte-Carlo simulation
t-Student test
Wilcoxon test
url http://periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1495/853
work_keys_str_mv AT josmarmazucheli umestudosobreotamanhoepoderdostesteststudentewilcoxonastudyaboutthesizeandpoweroftstudentandwilcoxontests
AT emilioaugustocoelhobarros umestudosobreotamanhoepoderdostesteststudentewilcoxonastudyaboutthesizeandpoweroftstudentandwilcoxontests
_version_ 1725187418320011264