Properties of Dislocation Drag from Phonon Wind at Ambient Conditions

It is well known that, under plastic deformation, dislocations are not only created but also move through the crystal, and their mobility is impeded by their interaction with the crystal structure. At high stress and temperature, this “drag„ is dominated by phonon wind, i.e., pho...

Full description

Bibliographic Details
Main Author: Daniel N. Blaschke
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/12/6/948
id doaj-f57bf7dbb41b47a7b09f38edd66e70d5
record_format Article
spelling doaj-f57bf7dbb41b47a7b09f38edd66e70d52020-11-25T00:32:56ZengMDPI AGMaterials1996-19442019-03-0112694810.3390/ma12060948ma12060948Properties of Dislocation Drag from Phonon Wind at Ambient ConditionsDaniel N. Blaschke0Los Alamos National Laboratory, Computational Physics Division, Los Alamos, NM 87545, USAIt is well known that, under plastic deformation, dislocations are not only created but also move through the crystal, and their mobility is impeded by their interaction with the crystal structure. At high stress and temperature, this &#8220;drag&#8222; is dominated by phonon wind, i.e., phonons scattering off dislocations. Employing the semi-isotropic approach discussed in detail in a previous paper (<i>J. Phys. Chem. Solids</i> <b>2019</b>, <i>124</i>, 24&#8211;35), we discuss here the approximate functional dependence of dislocation drag <i>B</i> on dislocation velocity in various regimes between a few percent of transverse sound speed <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mi mathvariant="normal">T</mi> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mi mathvariant="normal">T</mi> </msub> </semantics> </math> </inline-formula> (where <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mi mathvariant="normal">T</mi> </msub> </semantics> </math> </inline-formula> is the effective average transverse sound speed of the polycrystal). In doing so, we find an effective functional form for dislocation drag <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for different slip systems and dislocation characters at fixed (room) temperature and low pressure.https://www.mdpi.com/1996-1944/12/6/948dislocations in crystalsdrag coefficientphonon wind
collection DOAJ
language English
format Article
sources DOAJ
author Daniel N. Blaschke
spellingShingle Daniel N. Blaschke
Properties of Dislocation Drag from Phonon Wind at Ambient Conditions
Materials
dislocations in crystals
drag coefficient
phonon wind
author_facet Daniel N. Blaschke
author_sort Daniel N. Blaschke
title Properties of Dislocation Drag from Phonon Wind at Ambient Conditions
title_short Properties of Dislocation Drag from Phonon Wind at Ambient Conditions
title_full Properties of Dislocation Drag from Phonon Wind at Ambient Conditions
title_fullStr Properties of Dislocation Drag from Phonon Wind at Ambient Conditions
title_full_unstemmed Properties of Dislocation Drag from Phonon Wind at Ambient Conditions
title_sort properties of dislocation drag from phonon wind at ambient conditions
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2019-03-01
description It is well known that, under plastic deformation, dislocations are not only created but also move through the crystal, and their mobility is impeded by their interaction with the crystal structure. At high stress and temperature, this &#8220;drag&#8222; is dominated by phonon wind, i.e., phonons scattering off dislocations. Employing the semi-isotropic approach discussed in detail in a previous paper (<i>J. Phys. Chem. Solids</i> <b>2019</b>, <i>124</i>, 24&#8211;35), we discuss here the approximate functional dependence of dislocation drag <i>B</i> on dislocation velocity in various regimes between a few percent of transverse sound speed <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mi mathvariant="normal">T</mi> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mi mathvariant="normal">T</mi> </msub> </semantics> </math> </inline-formula> (where <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mi mathvariant="normal">T</mi> </msub> </semantics> </math> </inline-formula> is the effective average transverse sound speed of the polycrystal). In doing so, we find an effective functional form for dislocation drag <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for different slip systems and dislocation characters at fixed (room) temperature and low pressure.
topic dislocations in crystals
drag coefficient
phonon wind
url https://www.mdpi.com/1996-1944/12/6/948
work_keys_str_mv AT danielnblaschke propertiesofdislocationdragfromphononwindatambientconditions
_version_ 1725318295321575424