Contrast-free optical coherence tomography:Systematic evaluation of non-contrast media for intravascular assessment.

<h4>Background</h4>Coronary revascularization using imaging guidance is rapidly becoming the standard of care. Intravascular optical coherence tomography uses near-infrared light to obtain high resolution intravascular images. Standard optical coherence tomography imaging technique emplo...

Full description

Bibliographic Details
Main Authors: Trevor Simard, Pouya Motazedian, Kamran Majeed, Kiran Sarathy, Richard G Jung, Joshua Feder, F Daniel Ramirez, Pietro Di Santo, Jeffrey Marbach, Shan Dhaliwal, Spencer Short, Alisha Labinaz, Carl Schultz, Juan J Russo, Derek So, Aun-Yeong Chong, Michel Le May, Benjamin Hibbert
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0237588
Description
Summary:<h4>Background</h4>Coronary revascularization using imaging guidance is rapidly becoming the standard of care. Intravascular optical coherence tomography uses near-infrared light to obtain high resolution intravascular images. Standard optical coherence tomography imaging technique employs iodinated contrast dye to achieve the required blood clearance during acquisition. We sought to systematically evaluate the technical performance of saline as an alternative to iodinated contrast for intravascular optical coherence tomography assessment.<h4>Methods and results</h4>We performed bench top optical coherence tomography analysis on nylon tubing with sequential contrast/saline dilutions to empirically derive adjustment coefficients. We then applied these coefficients in vivo in an established rabbit abdominal stenting model with both saline and contrast optical coherence tomography imaging. In this model, we assessed the impact of saline on both quantitative and qualitative vessel assessment. Nylon tubing assessment demonstrated a linear relationship between saline and contrast for both area and diameter. We then derived adjustment coefficients, allowing for accurate calculation of area and diameter when converting saline into both contrast and reference dimensions. In vivo studies confirmed reduced area with saline versus contrast [7.43 (5.67-8.36) mm2 versus 8.2 (6.34-9.39) mm2, p = 0.001] and diameter [3.08 mm versus 3.23 mm, p = 0.001]. Following correction, a strong relationship was achieved in vivo between saline and contrast in both area and diameter without compromising image quality, artefact, or strut assessment.<h4>Conclusion</h4>Saline generates reduced dimensions compared to contrast during intravascular optical coherence tomography imaging. The relationship across physiologic coronary diameters is linear and can be corrected with high fidelity. Saline does not adversely impact image quality, artefact, or strut assessment.
ISSN:1932-6203