Rainfall Detection and Rainfall Rate Estimation Using Microwave Attenuation

Eight microwave links operating at frequencies ranging from 6 to 8 GHz and with path lengths ranging from 5.7 to 37.4 km traversing the city of Seoul, Korea are used to detect rainfall and estimate path-averaged rainfall rates. Rainfall detection using rain-induced attenuation (dB) was validated by...

Full description

Bibliographic Details
Main Authors: Min-Seong Kim, Byung Hyuk Kwon
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Atmosphere
Subjects:
Online Access:http://www.mdpi.com/2073-4433/9/8/287
Description
Summary:Eight microwave links operating at frequencies ranging from 6 to 8 GHz and with path lengths ranging from 5.7 to 37.4 km traversing the city of Seoul, Korea are used to detect rainfall and estimate path-averaged rainfall rates. Rainfall detection using rain-induced attenuation (dB) was validated by rain detectors installed at automatic weather stations, and the results confirmed that microwave links can be used to detect rainfall with an accuracy ≥80%. The power-law R-k relationships between rain-induced specific attenuation, k (dB km−1), and the rainfall rate, R (mm h−1), were established and cross-validated by estimating the path-averaged rainfall rate. The mean bias of the path-averaged rainfall rate, as compared to the rainfall rate from ground rain gauges, was between −3 and 1 mm h−1. The improved accuracy of rainfall detection led to the improved accuracy of the path-averaged rainfall rate. Hence, it was confirmed that microwave links, used for broadcasting and media communications, can identify rainy or dry periods (rain spells or dry spells) in a way comparable to rain detectors and provide high time-resolution rainfall rates in real time.
ISSN:2073-4433