A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe

<p>The Tibetan alpine steppe ecosystem covers an area of roughly 800&thinsp;000&thinsp;km<span class="inline-formula"><sup>2</sup></span> and contains up to 3.3&thinsp;% soil organic carbon in the uppermost 30&thinsp;cm, summing up to 1.93&...

Full description

Bibliographic Details
Main Authors: F. Nieberding, C. Wille, G. Fratini, M. O. Asmussen, Y. Wang, Y. Ma, T. Sachs
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/12/2705/2020/essd-12-2705-2020.pdf
id doaj-f53f139df9d34d1c890fbacd4f408bbf
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author F. Nieberding
F. Nieberding
C. Wille
G. Fratini
M. O. Asmussen
Y. Wang
Y. Wang
Y. Wang
Y. Ma
Y. Ma
Y. Ma
T. Sachs
T. Sachs
spellingShingle F. Nieberding
F. Nieberding
C. Wille
G. Fratini
M. O. Asmussen
Y. Wang
Y. Wang
Y. Wang
Y. Ma
Y. Ma
Y. Ma
T. Sachs
T. Sachs
A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe
Earth System Science Data
author_facet F. Nieberding
F. Nieberding
C. Wille
G. Fratini
M. O. Asmussen
Y. Wang
Y. Wang
Y. Wang
Y. Ma
Y. Ma
Y. Ma
T. Sachs
T. Sachs
author_sort F. Nieberding
title A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe
title_short A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe
title_full A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe
title_fullStr A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe
title_full_unstemmed A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe
title_sort long-term (2005–2019) eddy covariance data set of co<sub>2</sub> and h<sub>2</sub>o fluxes from the tibetan alpine steppe
publisher Copernicus Publications
series Earth System Science Data
issn 1866-3508
1866-3516
publishDate 2020-11-01
description <p>The Tibetan alpine steppe ecosystem covers an area of roughly 800&thinsp;000&thinsp;km<span class="inline-formula"><sup>2</sup></span> and contains up to 3.3&thinsp;% soil organic carbon in the uppermost 30&thinsp;cm, summing up to 1.93&thinsp;Pg&thinsp;C for the Tibet Autonomous Region only (472&thinsp;037&thinsp;km<span class="inline-formula"><sup>2</sup></span>). With temperatures rising 2 to 3 times faster than the global average, these carbon stocks are at risk of loss due to enhanced soil respiration. The remote location and the harsh environmental conditions on the Tibetan Plateau (TP) make it challenging to derive accurate data on the ecosystem–atmosphere exchange of carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) and water vapor (<span class="inline-formula">H<sub>2</sub>O</span>). Here, we provide the first multiyear data set of CO<span class="inline-formula"><sub>2</sub></span> and <span class="inline-formula">H<sub>2</sub>O</span> fluxes from the central Tibetan alpine steppe ecosystem, measured in situ using the eddy covariance technique. The calculated fluxes were rigorously quality checked and carefully corrected for a drift in concentration measurements. The gas analyzer self-heating effect during cold conditions was evaluated using the standard correction procedure and newly revised formulations <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx4">Burba et al.</a>, <a href="#bib1.bibx4">2008</a>; <a href="#bib1.bibx12">Frank and Massman</a>, <a href="#bib1.bibx12">2020</a>)</span>. A wind field analysis was conducted to identify influences of adjacent buildings on the turbulence regime and to exclude the disturbed fluxes from subsequent computations. The presented CO<span class="inline-formula"><sub>2</sub></span> fluxes were additionally gap filled using a standardized approach. The very low net carbon uptake across the 15-year data set highlights the special vulnerability of the Tibetan alpine steppe ecosystem to become a source of CO<span class="inline-formula"><sub>2</sub></span> due to global warming. The data are freely available at <a href="https://doi.org/10.5281/zenodo.3733202">https://doi.org/10.5281/zenodo.3733202</a> <span class="cit" id="xref_paren.2">(<a href="#bib1.bibx31">Nieberding et al.</a>, <a href="#bib1.bibx31">2020</a><a href="#bib1.bibx31">a</a>)</span> and <a href="https://doi.org/10.11888/Meteoro.tpdc.270333">https://doi.org/10.11888/Meteoro.tpdc.270333</a> <span class="cit" id="xref_paren.3">(<a href="#bib1.bibx32">Nieberding et al.</a>, <a href="#bib1.bibx32">2020</a><a href="#bib1.bibx32">b</a>)</span> and may help us to better understand the role of the Tibetan alpine steppe in the global carbon–climate feedback.</p>
url https://essd.copernicus.org/articles/12/2705/2020/essd-12-2705-2020.pdf
work_keys_str_mv AT fnieberding alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT fnieberding alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT cwille alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT gfratini alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT moasmussen alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT ywang alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT ywang alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT ywang alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT yma alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT yma alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT yma alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT tsachs alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT tsachs alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT fnieberding longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT fnieberding longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT cwille longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT gfratini longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT moasmussen longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT ywang longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT ywang longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT ywang longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT yma longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT yma longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT yma longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT tsachs longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
AT tsachs longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe
_version_ 1724450841425870848
spelling doaj-f53f139df9d34d1c890fbacd4f408bbf2020-11-25T04:00:24ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162020-11-01122705272410.5194/essd-12-2705-2020A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppeF. Nieberding0F. Nieberding1C. Wille2G. Fratini3M. O. Asmussen4Y. Wang5Y. Wang6Y. Wang7Y. Ma8Y. Ma9Y. Ma10T. Sachs11T. Sachs12Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Braunschweig, GermanyGFZ German Research Center for Geosciences, Potsdam, GermanyGFZ German Research Center for Geosciences, Potsdam, GermanyLI-COR Biosciences Inc., Lincoln, Nebraska, USAInstitute of Geosystems and Bioindication, Technische Universität Braunschweig, Braunschweig, GermanyKey Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, ChinaCAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, ChinaUniversity of Chinese Academy of Sciences, Beijing, ChinaKey Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, ChinaCAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, ChinaUniversity of Chinese Academy of Sciences, Beijing, ChinaGFZ German Research Center for Geosciences, Potsdam, GermanyInstitute of Flight Guidance, Technische Universität Braunschweig, Braunschweig, Germany<p>The Tibetan alpine steppe ecosystem covers an area of roughly 800&thinsp;000&thinsp;km<span class="inline-formula"><sup>2</sup></span> and contains up to 3.3&thinsp;% soil organic carbon in the uppermost 30&thinsp;cm, summing up to 1.93&thinsp;Pg&thinsp;C for the Tibet Autonomous Region only (472&thinsp;037&thinsp;km<span class="inline-formula"><sup>2</sup></span>). With temperatures rising 2 to 3 times faster than the global average, these carbon stocks are at risk of loss due to enhanced soil respiration. The remote location and the harsh environmental conditions on the Tibetan Plateau (TP) make it challenging to derive accurate data on the ecosystem–atmosphere exchange of carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) and water vapor (<span class="inline-formula">H<sub>2</sub>O</span>). Here, we provide the first multiyear data set of CO<span class="inline-formula"><sub>2</sub></span> and <span class="inline-formula">H<sub>2</sub>O</span> fluxes from the central Tibetan alpine steppe ecosystem, measured in situ using the eddy covariance technique. The calculated fluxes were rigorously quality checked and carefully corrected for a drift in concentration measurements. The gas analyzer self-heating effect during cold conditions was evaluated using the standard correction procedure and newly revised formulations <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx4">Burba et al.</a>, <a href="#bib1.bibx4">2008</a>; <a href="#bib1.bibx12">Frank and Massman</a>, <a href="#bib1.bibx12">2020</a>)</span>. A wind field analysis was conducted to identify influences of adjacent buildings on the turbulence regime and to exclude the disturbed fluxes from subsequent computations. The presented CO<span class="inline-formula"><sub>2</sub></span> fluxes were additionally gap filled using a standardized approach. The very low net carbon uptake across the 15-year data set highlights the special vulnerability of the Tibetan alpine steppe ecosystem to become a source of CO<span class="inline-formula"><sub>2</sub></span> due to global warming. The data are freely available at <a href="https://doi.org/10.5281/zenodo.3733202">https://doi.org/10.5281/zenodo.3733202</a> <span class="cit" id="xref_paren.2">(<a href="#bib1.bibx31">Nieberding et al.</a>, <a href="#bib1.bibx31">2020</a><a href="#bib1.bibx31">a</a>)</span> and <a href="https://doi.org/10.11888/Meteoro.tpdc.270333">https://doi.org/10.11888/Meteoro.tpdc.270333</a> <span class="cit" id="xref_paren.3">(<a href="#bib1.bibx32">Nieberding et al.</a>, <a href="#bib1.bibx32">2020</a><a href="#bib1.bibx32">b</a>)</span> and may help us to better understand the role of the Tibetan alpine steppe in the global carbon–climate feedback.</p>https://essd.copernicus.org/articles/12/2705/2020/essd-12-2705-2020.pdf