A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe
<p>The Tibetan alpine steppe ecosystem covers an area of roughly 800 000 km<span class="inline-formula"><sup>2</sup></span> and contains up to 3.3 % soil organic carbon in the uppermost 30 cm, summing up to 1.93&...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-11-01
|
Series: | Earth System Science Data |
Online Access: | https://essd.copernicus.org/articles/12/2705/2020/essd-12-2705-2020.pdf |
id |
doaj-f53f139df9d34d1c890fbacd4f408bbf |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
F. Nieberding F. Nieberding C. Wille G. Fratini M. O. Asmussen Y. Wang Y. Wang Y. Wang Y. Ma Y. Ma Y. Ma T. Sachs T. Sachs |
spellingShingle |
F. Nieberding F. Nieberding C. Wille G. Fratini M. O. Asmussen Y. Wang Y. Wang Y. Wang Y. Ma Y. Ma Y. Ma T. Sachs T. Sachs A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe Earth System Science Data |
author_facet |
F. Nieberding F. Nieberding C. Wille G. Fratini M. O. Asmussen Y. Wang Y. Wang Y. Wang Y. Ma Y. Ma Y. Ma T. Sachs T. Sachs |
author_sort |
F. Nieberding |
title |
A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe |
title_short |
A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe |
title_full |
A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe |
title_fullStr |
A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe |
title_full_unstemmed |
A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppe |
title_sort |
long-term (2005–2019) eddy covariance data set of co<sub>2</sub> and h<sub>2</sub>o fluxes from the tibetan alpine steppe |
publisher |
Copernicus Publications |
series |
Earth System Science Data |
issn |
1866-3508 1866-3516 |
publishDate |
2020-11-01 |
description |
<p>The Tibetan alpine steppe ecosystem covers an area of roughly 800 000 km<span class="inline-formula"><sup>2</sup></span> and contains up to 3.3 % soil organic carbon in the uppermost 30 cm, summing up to 1.93 Pg C for the Tibet Autonomous Region only (472 037 km<span class="inline-formula"><sup>2</sup></span>). With temperatures rising 2 to 3 times faster than the global average, these carbon stocks are at risk of loss due to enhanced soil respiration. The remote location and the harsh environmental conditions on the Tibetan Plateau (TP) make it challenging to derive accurate data on the ecosystem–atmosphere exchange of carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) and water vapor (<span class="inline-formula">H<sub>2</sub>O</span>). Here, we provide the first multiyear data set of CO<span class="inline-formula"><sub>2</sub></span> and <span class="inline-formula">H<sub>2</sub>O</span> fluxes from the central Tibetan alpine steppe ecosystem, measured in situ using the eddy covariance technique. The calculated fluxes were rigorously quality checked and carefully corrected for a drift in concentration measurements. The gas analyzer self-heating effect during cold conditions was evaluated using the standard correction procedure and newly revised formulations <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx4">Burba et al.</a>, <a href="#bib1.bibx4">2008</a>; <a href="#bib1.bibx12">Frank and Massman</a>, <a href="#bib1.bibx12">2020</a>)</span>. A wind field analysis was conducted to identify influences of adjacent buildings on the turbulence regime and to exclude the disturbed fluxes from subsequent computations. The presented CO<span class="inline-formula"><sub>2</sub></span> fluxes were additionally gap filled using a standardized approach. The very low net carbon uptake across the 15-year data set highlights the special vulnerability of the Tibetan alpine steppe ecosystem to become a source of CO<span class="inline-formula"><sub>2</sub></span> due to global warming. The data are freely available at <a href="https://doi.org/10.5281/zenodo.3733202">https://doi.org/10.5281/zenodo.3733202</a> <span class="cit" id="xref_paren.2">(<a href="#bib1.bibx31">Nieberding et al.</a>, <a href="#bib1.bibx31">2020</a><a href="#bib1.bibx31">a</a>)</span> and <a href="https://doi.org/10.11888/Meteoro.tpdc.270333">https://doi.org/10.11888/Meteoro.tpdc.270333</a> <span class="cit" id="xref_paren.3">(<a href="#bib1.bibx32">Nieberding et al.</a>, <a href="#bib1.bibx32">2020</a><a href="#bib1.bibx32">b</a>)</span> and may help us to better understand the role of the Tibetan alpine steppe in the global carbon–climate feedback.</p> |
url |
https://essd.copernicus.org/articles/12/2705/2020/essd-12-2705-2020.pdf |
work_keys_str_mv |
AT fnieberding alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT fnieberding alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT cwille alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT gfratini alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT moasmussen alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT ywang alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT ywang alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT ywang alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT yma alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT yma alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT yma alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT tsachs alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT tsachs alongterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT fnieberding longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT fnieberding longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT cwille longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT gfratini longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT moasmussen longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT ywang longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT ywang longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT ywang longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT yma longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT yma longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT yma longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT tsachs longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe AT tsachs longterm20052019eddycovariancedatasetofcosub2subandhsub2subofluxesfromthetibetanalpinesteppe |
_version_ |
1724450841425870848 |
spelling |
doaj-f53f139df9d34d1c890fbacd4f408bbf2020-11-25T04:00:24ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162020-11-01122705272410.5194/essd-12-2705-2020A long-term (2005–2019) eddy covariance data set of CO<sub>2</sub> and H<sub>2</sub>O fluxes from the Tibetan alpine steppeF. Nieberding0F. Nieberding1C. Wille2G. Fratini3M. O. Asmussen4Y. Wang5Y. Wang6Y. Wang7Y. Ma8Y. Ma9Y. Ma10T. Sachs11T. Sachs12Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Braunschweig, GermanyGFZ German Research Center for Geosciences, Potsdam, GermanyGFZ German Research Center for Geosciences, Potsdam, GermanyLI-COR Biosciences Inc., Lincoln, Nebraska, USAInstitute of Geosystems and Bioindication, Technische Universität Braunschweig, Braunschweig, GermanyKey Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, ChinaCAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, ChinaUniversity of Chinese Academy of Sciences, Beijing, ChinaKey Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, ChinaCAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, ChinaUniversity of Chinese Academy of Sciences, Beijing, ChinaGFZ German Research Center for Geosciences, Potsdam, GermanyInstitute of Flight Guidance, Technische Universität Braunschweig, Braunschweig, Germany<p>The Tibetan alpine steppe ecosystem covers an area of roughly 800 000 km<span class="inline-formula"><sup>2</sup></span> and contains up to 3.3 % soil organic carbon in the uppermost 30 cm, summing up to 1.93 Pg C for the Tibet Autonomous Region only (472 037 km<span class="inline-formula"><sup>2</sup></span>). With temperatures rising 2 to 3 times faster than the global average, these carbon stocks are at risk of loss due to enhanced soil respiration. The remote location and the harsh environmental conditions on the Tibetan Plateau (TP) make it challenging to derive accurate data on the ecosystem–atmosphere exchange of carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) and water vapor (<span class="inline-formula">H<sub>2</sub>O</span>). Here, we provide the first multiyear data set of CO<span class="inline-formula"><sub>2</sub></span> and <span class="inline-formula">H<sub>2</sub>O</span> fluxes from the central Tibetan alpine steppe ecosystem, measured in situ using the eddy covariance technique. The calculated fluxes were rigorously quality checked and carefully corrected for a drift in concentration measurements. The gas analyzer self-heating effect during cold conditions was evaluated using the standard correction procedure and newly revised formulations <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx4">Burba et al.</a>, <a href="#bib1.bibx4">2008</a>; <a href="#bib1.bibx12">Frank and Massman</a>, <a href="#bib1.bibx12">2020</a>)</span>. A wind field analysis was conducted to identify influences of adjacent buildings on the turbulence regime and to exclude the disturbed fluxes from subsequent computations. The presented CO<span class="inline-formula"><sub>2</sub></span> fluxes were additionally gap filled using a standardized approach. The very low net carbon uptake across the 15-year data set highlights the special vulnerability of the Tibetan alpine steppe ecosystem to become a source of CO<span class="inline-formula"><sub>2</sub></span> due to global warming. The data are freely available at <a href="https://doi.org/10.5281/zenodo.3733202">https://doi.org/10.5281/zenodo.3733202</a> <span class="cit" id="xref_paren.2">(<a href="#bib1.bibx31">Nieberding et al.</a>, <a href="#bib1.bibx31">2020</a><a href="#bib1.bibx31">a</a>)</span> and <a href="https://doi.org/10.11888/Meteoro.tpdc.270333">https://doi.org/10.11888/Meteoro.tpdc.270333</a> <span class="cit" id="xref_paren.3">(<a href="#bib1.bibx32">Nieberding et al.</a>, <a href="#bib1.bibx32">2020</a><a href="#bib1.bibx32">b</a>)</span> and may help us to better understand the role of the Tibetan alpine steppe in the global carbon–climate feedback.</p>https://essd.copernicus.org/articles/12/2705/2020/essd-12-2705-2020.pdf |