RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinus
Tetranychus cinnabarinus is an important agricultural pest with a broad host range. We previously identified curcumin as a promising acaricidal compound against T. cinnabarinus. However, the acaricidal mechanism of curcumin remains unknown. In this study, RNA-seq was employed to analyze the transcri...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | BioMed Research International |
Online Access: | http://dx.doi.org/10.1155/2016/2796260 |
id |
doaj-f51936b83ac445e68d8888fd8154d5ff |
---|---|
record_format |
Article |
spelling |
doaj-f51936b83ac445e68d8888fd8154d5ff2020-11-24T22:34:23ZengHindawi LimitedBioMed Research International2314-61332314-61412016-01-01201610.1155/2016/27962602796260RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinusXuejiao Liu0Dousheng Wu1Yongqiang Zhang2Hong Zhou3Ting Lai4Wei Ding5College of Plant Protection, Southwest University, Chongqing 400716, ChinaCollege of Plant Protection, Southwest University, Chongqing 400716, ChinaCollege of Plant Protection, Southwest University, Chongqing 400716, ChinaCollege of Plant Protection, Southwest University, Chongqing 400716, ChinaCollege of Plant Protection, Southwest University, Chongqing 400716, ChinaCollege of Plant Protection, Southwest University, Chongqing 400716, ChinaTetranychus cinnabarinus is an important agricultural pest with a broad host range. We previously identified curcumin as a promising acaricidal compound against T. cinnabarinus. However, the acaricidal mechanism of curcumin remains unknown. In this study, RNA-seq was employed to analyze the transcriptome changes in T. cinnabarinus treated with curcumin or the solvent. A total of 105,706,297 clean sequence reads were generated by sequencing, with more than 90% of the reads successfully mapped to the reference sequence. The RNA-seq identified 111 and 96 differentially expressed genes between curcumin- and solvent-treated mites at 24 and 48 h after treatment, respectively. GO enrichment analysis of differentially expressed genes showed that the cellular process was the dominant group at both time points. Finally, we screened 23 differentially expressed genes that were functionally identical or similar to the targets of common insecticide/acaricides or genes that were associated with mite detoxification and metabolism. Calmodulin, phospholipase A2, and phospholipase C were activated upon curcumin treatment suggesting that the calcium channel related genes might play important roles in mite’s response to curcumin. Overall our results revealed the global transcriptional changes in T. cinnabarinus after curcumin treatment to enable further identification of the targets of curcumin in mites.http://dx.doi.org/10.1155/2016/2796260 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xuejiao Liu Dousheng Wu Yongqiang Zhang Hong Zhou Ting Lai Wei Ding |
spellingShingle |
Xuejiao Liu Dousheng Wu Yongqiang Zhang Hong Zhou Ting Lai Wei Ding RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinus BioMed Research International |
author_facet |
Xuejiao Liu Dousheng Wu Yongqiang Zhang Hong Zhou Ting Lai Wei Ding |
author_sort |
Xuejiao Liu |
title |
RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinus |
title_short |
RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinus |
title_full |
RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinus |
title_fullStr |
RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinus |
title_full_unstemmed |
RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinus |
title_sort |
rna-seq analysis reveals candidate targets for curcumin against tetranychus cinnabarinus |
publisher |
Hindawi Limited |
series |
BioMed Research International |
issn |
2314-6133 2314-6141 |
publishDate |
2016-01-01 |
description |
Tetranychus cinnabarinus is an important agricultural pest with a broad host range. We previously identified curcumin as a promising acaricidal compound against T. cinnabarinus. However, the acaricidal mechanism of curcumin remains unknown. In this study, RNA-seq was employed to analyze the transcriptome changes in T. cinnabarinus treated with curcumin or the solvent. A total of 105,706,297 clean sequence reads were generated by sequencing, with more than 90% of the reads successfully mapped to the reference sequence. The RNA-seq identified 111 and 96 differentially expressed genes between curcumin- and solvent-treated mites at 24 and 48 h after treatment, respectively. GO enrichment analysis of differentially expressed genes showed that the cellular process was the dominant group at both time points. Finally, we screened 23 differentially expressed genes that were functionally identical or similar to the targets of common insecticide/acaricides or genes that were associated with mite detoxification and metabolism. Calmodulin, phospholipase A2, and phospholipase C were activated upon curcumin treatment suggesting that the calcium channel related genes might play important roles in mite’s response to curcumin. Overall our results revealed the global transcriptional changes in T. cinnabarinus after curcumin treatment to enable further identification of the targets of curcumin in mites. |
url |
http://dx.doi.org/10.1155/2016/2796260 |
work_keys_str_mv |
AT xuejiaoliu rnaseqanalysisrevealscandidatetargetsforcurcuminagainsttetranychuscinnabarinus AT doushengwu rnaseqanalysisrevealscandidatetargetsforcurcuminagainsttetranychuscinnabarinus AT yongqiangzhang rnaseqanalysisrevealscandidatetargetsforcurcuminagainsttetranychuscinnabarinus AT hongzhou rnaseqanalysisrevealscandidatetargetsforcurcuminagainsttetranychuscinnabarinus AT tinglai rnaseqanalysisrevealscandidatetargetsforcurcuminagainsttetranychuscinnabarinus AT weiding rnaseqanalysisrevealscandidatetargetsforcurcuminagainsttetranychuscinnabarinus |
_version_ |
1725727803901476864 |