Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth

The subclass of a zero order entire function $f$ is pointed out for which the existence of angular $\upsilon$-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$-metric of its  logarithmic derivative.

Bibliographic Details
Main Authors: M.R. Mostova, M.V. Zabolotskyj
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2015-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/1399
id doaj-f517e7f3db604cf5babd98874b8e6f3f
record_format Article
spelling doaj-f517e7f3db604cf5babd98874b8e6f3f2020-11-25T03:06:43ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102015-12-017220921410.15330/cmp.7.2.209-2141399Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growthM.R. Mostova0M.V. Zabolotskyj1Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, UkraineIvan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, UkraineThe subclass of a zero order entire function $f$ is pointed out for which the existence of angular $\upsilon$-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$-metric of its  logarithmic derivative.https://journals.pnu.edu.ua/index.php/cmp/article/view/1399logarithmic derivativeentire functionangular densityfourier coefficientsslowly increasing function
collection DOAJ
language English
format Article
sources DOAJ
author M.R. Mostova
M.V. Zabolotskyj
spellingShingle M.R. Mostova
M.V. Zabolotskyj
Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth
Karpatsʹkì Matematičnì Publìkacìï
logarithmic derivative
entire function
angular density
fourier coefficients
slowly increasing function
author_facet M.R. Mostova
M.V. Zabolotskyj
author_sort M.R. Mostova
title Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth
title_short Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth
title_full Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth
title_fullStr Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth
title_full_unstemmed Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth
title_sort convergence in $l^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
2313-0210
publishDate 2015-12-01
description The subclass of a zero order entire function $f$ is pointed out for which the existence of angular $\upsilon$-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$-metric of its  logarithmic derivative.
topic logarithmic derivative
entire function
angular density
fourier coefficients
slowly increasing function
url https://journals.pnu.edu.ua/index.php/cmp/article/view/1399
work_keys_str_mv AT mrmostova convergenceinlp02pimetricoflogarithmicderivativeandangularupsilondensityforzerosofentirefunctionofslowlygrowth
AT mvzabolotskyj convergenceinlp02pimetricoflogarithmicderivativeandangularupsilondensityforzerosofentirefunctionofslowlygrowth
_version_ 1724672924780068864