Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth
The subclass of a zero order entire function $f$ is pointed out for which the existence of angular $\upsilon$-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$-metric of its logarithmic derivative.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2015-12-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/1399 |
id |
doaj-f517e7f3db604cf5babd98874b8e6f3f |
---|---|
record_format |
Article |
spelling |
doaj-f517e7f3db604cf5babd98874b8e6f3f2020-11-25T03:06:43ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102015-12-017220921410.15330/cmp.7.2.209-2141399Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growthM.R. Mostova0M.V. Zabolotskyj1Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, UkraineIvan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, UkraineThe subclass of a zero order entire function $f$ is pointed out for which the existence of angular $\upsilon$-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$-metric of its logarithmic derivative.https://journals.pnu.edu.ua/index.php/cmp/article/view/1399logarithmic derivativeentire functionangular densityfourier coefficientsslowly increasing function |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M.R. Mostova M.V. Zabolotskyj |
spellingShingle |
M.R. Mostova M.V. Zabolotskyj Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth Karpatsʹkì Matematičnì Publìkacìï logarithmic derivative entire function angular density fourier coefficients slowly increasing function |
author_facet |
M.R. Mostova M.V. Zabolotskyj |
author_sort |
M.R. Mostova |
title |
Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
title_short |
Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
title_full |
Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
title_fullStr |
Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
title_full_unstemmed |
Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
title_sort |
convergence in $l^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
publisher |
Vasyl Stefanyk Precarpathian National University |
series |
Karpatsʹkì Matematičnì Publìkacìï |
issn |
2075-9827 2313-0210 |
publishDate |
2015-12-01 |
description |
The subclass of a zero order entire function $f$ is pointed out for which the existence of angular $\upsilon$-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$-metric of its logarithmic derivative. |
topic |
logarithmic derivative entire function angular density fourier coefficients slowly increasing function |
url |
https://journals.pnu.edu.ua/index.php/cmp/article/view/1399 |
work_keys_str_mv |
AT mrmostova convergenceinlp02pimetricoflogarithmicderivativeandangularupsilondensityforzerosofentirefunctionofslowlygrowth AT mvzabolotskyj convergenceinlp02pimetricoflogarithmicderivativeandangularupsilondensityforzerosofentirefunctionofslowlygrowth |
_version_ |
1724672924780068864 |