Smooth Approximation of Lipschitz Functions on Finsler Manifolds

We study the smooth approximation of Lipschitz functions on Finsler manifolds, keeping control on the corresponding Lipschitz constants. We prove that, given a Lipschitz function f:M→ℝ defined on a connected, second countable Finsler manifold M, for each positive continuous function ε:M→(0,∞) and ea...

Full description

Bibliographic Details
Main Authors: M. I. Garrido, J. A. Jaramillo, Y. C. Rangel
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2013/164571
Description
Summary:We study the smooth approximation of Lipschitz functions on Finsler manifolds, keeping control on the corresponding Lipschitz constants. We prove that, given a Lipschitz function f:M→ℝ defined on a connected, second countable Finsler manifold M, for each positive continuous function ε:M→(0,∞) and each r>0, there exists a C1-smooth Lipschitz function g:M→ℝ such that |f(x)-g(x)|≤ε(x), for every x∈M, and Lip(g)≤Lip(f)+r. As a consequence, we derive a completeness criterium in the class of what we call quasi-reversible Finsler manifolds. Finally, considering the normed algebra Cb1(M) of all C1 functions with bounded derivative on a complete quasi-reversible Finsler manifold M, we obtain a characterization of algebra isomorphisms T:Cb1(N)→Cb1(M) as composition operators. From this we obtain a variant of Myers-Nakai Theorem in the context of complete reversible Finsler manifolds.
ISSN:0972-6802
1758-4965