Drop Impact Analysis of Cushioning System with an Elastic Critical Component of Cantilever Beam Type

In some electronic products and sculpture crafts, there are possibly vulnerable elements that can be idealized as cantilever beam type, failure of which will certainly lead the whole product to lose function. Based on the critical component of cantilever beam type, a nonlinear coupling dynamics mode...

Full description

Bibliographic Details
Main Authors: De Gao, Fu-de Lu, Si-jia Chen
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2013/379068
Description
Summary:In some electronic products and sculpture crafts, there are possibly vulnerable elements that can be idealized as cantilever beam type, failure of which will certainly lead the whole product to lose function. Based on the critical component of cantilever beam type, a nonlinear coupling dynamics model between the critical component and the item was established. The computing procedure of the model was designed using finite difference scheme. A numerical example shows that the acceleration changes notably with the length of the critical component, and the cantilevered end of the critical component is liable to be damaged, because the dynamic stress there is the largest. In this case, the maximum acceleration just cannot serve as the damaged criterion of the packaged goods, only with the maximum stress value. In order to avoid making a mistake, it is necessary to consider the critical component as an elastic element. The maximum stress of the cantilever beam surpasses the proportional limit of elastic components or is not an effective structural strength to determine whether the product loses its functions.
ISSN:1024-123X
1563-5147