Template-Based Step Detection with Inertial Measurement Units

This article presents a method for step detection from accelerometer and gyrometer signals recorded with Inertial Measurement Units (IMUs). The principle of our step detection algorithm is to recognize the start and end times of the steps in the signal thanks to a predefined library of templates. Th...

Full description

Bibliographic Details
Main Authors: Laurent Oudre, Rémi Barrois-Müller, Thomas Moreau, Charles Truong, Aliénor Vienne-Jumeau, Damien Ricard, Nicolas Vayatis, Pierre-Paul Vidal
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/18/11/4033
id doaj-f4cb7550df4e4298bf1550df9c0a21a5
record_format Article
spelling doaj-f4cb7550df4e4298bf1550df9c0a21a52020-11-24T23:22:34ZengMDPI AGSensors1424-82202018-11-011811403310.3390/s18114033s18114033Template-Based Step Detection with Inertial Measurement UnitsLaurent Oudre0Rémi Barrois-Müller1Thomas Moreau2Charles Truong3Aliénor Vienne-Jumeau4Damien Ricard5Nicolas Vayatis6Pierre-Paul Vidal7L2TI, University Paris 13, 93430 Villetaneuse, FranceCOGNAC-G (UMR 8257), CNRS Service de Santé des Armées University Paris Descartes, 75006 Paris, FranceCMLA (UMR 8536), CNRS ENS Paris-Saclay, 94235 Cachan, FranceCMLA (UMR 8536), CNRS ENS Paris-Saclay, 94235 Cachan, FranceCOGNAC-G (UMR 8257), CNRS Service de Santé des Armées University Paris Descartes, 75006 Paris, FranceService de neurologie, Hôpital d’Instruction des Armées Percy, Service de Santé des Armées, 92190 Clamart, FranceCMLA (UMR 8536), CNRS ENS Paris-Saclay, 94235 Cachan, FranceHangzhou Dianzi University, Hangzhou 310005, Zhejiang, ChinaThis article presents a method for step detection from accelerometer and gyrometer signals recorded with Inertial Measurement Units (IMUs). The principle of our step detection algorithm is to recognize the start and end times of the steps in the signal thanks to a predefined library of templates. The algorithm is tested on a database of 1020 recordings, composed of healthy subjects and patients with various neurological or orthopedic troubles. Simulations on more than 40,000 steps show that the template-based method achieves remarkable results with a 98% recall and a 98% precision. The method adapts well to pathological subjects and can be used in a medical context for robust step estimation and gait characterization.https://www.mdpi.com/1424-8220/18/11/4033inertial measurement unitsgait analysisbiomedical signal processingpattern recognitionstep detectionphysiological signals
collection DOAJ
language English
format Article
sources DOAJ
author Laurent Oudre
Rémi Barrois-Müller
Thomas Moreau
Charles Truong
Aliénor Vienne-Jumeau
Damien Ricard
Nicolas Vayatis
Pierre-Paul Vidal
spellingShingle Laurent Oudre
Rémi Barrois-Müller
Thomas Moreau
Charles Truong
Aliénor Vienne-Jumeau
Damien Ricard
Nicolas Vayatis
Pierre-Paul Vidal
Template-Based Step Detection with Inertial Measurement Units
Sensors
inertial measurement units
gait analysis
biomedical signal processing
pattern recognition
step detection
physiological signals
author_facet Laurent Oudre
Rémi Barrois-Müller
Thomas Moreau
Charles Truong
Aliénor Vienne-Jumeau
Damien Ricard
Nicolas Vayatis
Pierre-Paul Vidal
author_sort Laurent Oudre
title Template-Based Step Detection with Inertial Measurement Units
title_short Template-Based Step Detection with Inertial Measurement Units
title_full Template-Based Step Detection with Inertial Measurement Units
title_fullStr Template-Based Step Detection with Inertial Measurement Units
title_full_unstemmed Template-Based Step Detection with Inertial Measurement Units
title_sort template-based step detection with inertial measurement units
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2018-11-01
description This article presents a method for step detection from accelerometer and gyrometer signals recorded with Inertial Measurement Units (IMUs). The principle of our step detection algorithm is to recognize the start and end times of the steps in the signal thanks to a predefined library of templates. The algorithm is tested on a database of 1020 recordings, composed of healthy subjects and patients with various neurological or orthopedic troubles. Simulations on more than 40,000 steps show that the template-based method achieves remarkable results with a 98% recall and a 98% precision. The method adapts well to pathological subjects and can be used in a medical context for robust step estimation and gait characterization.
topic inertial measurement units
gait analysis
biomedical signal processing
pattern recognition
step detection
physiological signals
url https://www.mdpi.com/1424-8220/18/11/4033
work_keys_str_mv AT laurentoudre templatebasedstepdetectionwithinertialmeasurementunits
AT remibarroismuller templatebasedstepdetectionwithinertialmeasurementunits
AT thomasmoreau templatebasedstepdetectionwithinertialmeasurementunits
AT charlestruong templatebasedstepdetectionwithinertialmeasurementunits
AT alienorviennejumeau templatebasedstepdetectionwithinertialmeasurementunits
AT damienricard templatebasedstepdetectionwithinertialmeasurementunits
AT nicolasvayatis templatebasedstepdetectionwithinertialmeasurementunits
AT pierrepaulvidal templatebasedstepdetectionwithinertialmeasurementunits
_version_ 1725567538934317056