Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions

Abstract We consider the quasilinear wave equation u t t − △ u t − div ( | ∇ u | α − 2 ∇ u ) − div ( | ∇ u t | β − 2 ∇ u t ) + a | u t | m − 2 u t = b | u | p − 2 u $$u_{tt} -\triangle u_{t} -\operatorname{div}\bigl(\vert \nabla u\vert ^{\alpha-2} \nabla u\bigr) - \operatorname{div}\bigl(\vert \nabl...

Full description

Bibliographic Details
Main Authors: Jin-Mun Jeong, Jong-Yeoul Park, Yong Han Kang
Format: Article
Language:English
Published: SpringerOpen 2017-03-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-017-0773-1
id doaj-f4af46a4ce8e4319b886d8521520da0a
record_format Article
spelling doaj-f4af46a4ce8e4319b886d8521520da0a2020-11-25T00:43:27ZengSpringerOpenBoundary Value Problems1687-27702017-03-012017111010.1186/s13661-017-0773-1Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditionsJin-Mun Jeong0Jong-Yeoul Park1Yong Han Kang2Division of Mathematical Sciences, Pukyong National UniversityDepartment of Mathematics, Pusan National UniversityInstitute of Liberal Education, Catholic University of DaeguAbstract We consider the quasilinear wave equation u t t − △ u t − div ( | ∇ u | α − 2 ∇ u ) − div ( | ∇ u t | β − 2 ∇ u t ) + a | u t | m − 2 u t = b | u | p − 2 u $$u_{tt} -\triangle u_{t} -\operatorname{div}\bigl(\vert \nabla u\vert ^{\alpha-2} \nabla u\bigr) - \operatorname{div}\bigl(\vert \nabla u_{t}\vert ^{\beta-2} \nabla u_{t} \bigr) +a \vert u_{t}\vert ^{m-2} u_{t} =b|u|^{p-2} u $$ a , b > 0 $a,b>0$ , associated with initial and Dirichlet boundary conditions at one part and acoustic boundary conditions at another part, respectively. We prove, under suitable conditions on α, β, m, p and for negative initial energy, a global nonexistence of solutions.http://link.springer.com/article/10.1186/s13661-017-0773-1quasilinear wave equationblow-upacoustic boundary
collection DOAJ
language English
format Article
sources DOAJ
author Jin-Mun Jeong
Jong-Yeoul Park
Yong Han Kang
spellingShingle Jin-Mun Jeong
Jong-Yeoul Park
Yong Han Kang
Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions
Boundary Value Problems
quasilinear wave equation
blow-up
acoustic boundary
author_facet Jin-Mun Jeong
Jong-Yeoul Park
Yong Han Kang
author_sort Jin-Mun Jeong
title Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions
title_short Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions
title_full Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions
title_fullStr Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions
title_full_unstemmed Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions
title_sort global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2017-03-01
description Abstract We consider the quasilinear wave equation u t t − △ u t − div ( | ∇ u | α − 2 ∇ u ) − div ( | ∇ u t | β − 2 ∇ u t ) + a | u t | m − 2 u t = b | u | p − 2 u $$u_{tt} -\triangle u_{t} -\operatorname{div}\bigl(\vert \nabla u\vert ^{\alpha-2} \nabla u\bigr) - \operatorname{div}\bigl(\vert \nabla u_{t}\vert ^{\beta-2} \nabla u_{t} \bigr) +a \vert u_{t}\vert ^{m-2} u_{t} =b|u|^{p-2} u $$ a , b > 0 $a,b>0$ , associated with initial and Dirichlet boundary conditions at one part and acoustic boundary conditions at another part, respectively. We prove, under suitable conditions on α, β, m, p and for negative initial energy, a global nonexistence of solutions.
topic quasilinear wave equation
blow-up
acoustic boundary
url http://link.springer.com/article/10.1186/s13661-017-0773-1
work_keys_str_mv AT jinmunjeong globalnonexistenceofsolutionsforaquasilinearwaveequationwithacousticboundaryconditions
AT jongyeoulpark globalnonexistenceofsolutionsforaquasilinearwaveequationwithacousticboundaryconditions
AT yonghankang globalnonexistenceofsolutionsforaquasilinearwaveequationwithacousticboundaryconditions
_version_ 1725278236277997568