Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions
Abstract We consider the quasilinear wave equation u t t − △ u t − div ( | ∇ u | α − 2 ∇ u ) − div ( | ∇ u t | β − 2 ∇ u t ) + a | u t | m − 2 u t = b | u | p − 2 u $$u_{tt} -\triangle u_{t} -\operatorname{div}\bigl(\vert \nabla u\vert ^{\alpha-2} \nabla u\bigr) - \operatorname{div}\bigl(\vert \nabl...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-03-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-017-0773-1 |
id |
doaj-f4af46a4ce8e4319b886d8521520da0a |
---|---|
record_format |
Article |
spelling |
doaj-f4af46a4ce8e4319b886d8521520da0a2020-11-25T00:43:27ZengSpringerOpenBoundary Value Problems1687-27702017-03-012017111010.1186/s13661-017-0773-1Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditionsJin-Mun Jeong0Jong-Yeoul Park1Yong Han Kang2Division of Mathematical Sciences, Pukyong National UniversityDepartment of Mathematics, Pusan National UniversityInstitute of Liberal Education, Catholic University of DaeguAbstract We consider the quasilinear wave equation u t t − △ u t − div ( | ∇ u | α − 2 ∇ u ) − div ( | ∇ u t | β − 2 ∇ u t ) + a | u t | m − 2 u t = b | u | p − 2 u $$u_{tt} -\triangle u_{t} -\operatorname{div}\bigl(\vert \nabla u\vert ^{\alpha-2} \nabla u\bigr) - \operatorname{div}\bigl(\vert \nabla u_{t}\vert ^{\beta-2} \nabla u_{t} \bigr) +a \vert u_{t}\vert ^{m-2} u_{t} =b|u|^{p-2} u $$ a , b > 0 $a,b>0$ , associated with initial and Dirichlet boundary conditions at one part and acoustic boundary conditions at another part, respectively. We prove, under suitable conditions on α, β, m, p and for negative initial energy, a global nonexistence of solutions.http://link.springer.com/article/10.1186/s13661-017-0773-1quasilinear wave equationblow-upacoustic boundary |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jin-Mun Jeong Jong-Yeoul Park Yong Han Kang |
spellingShingle |
Jin-Mun Jeong Jong-Yeoul Park Yong Han Kang Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions Boundary Value Problems quasilinear wave equation blow-up acoustic boundary |
author_facet |
Jin-Mun Jeong Jong-Yeoul Park Yong Han Kang |
author_sort |
Jin-Mun Jeong |
title |
Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions |
title_short |
Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions |
title_full |
Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions |
title_fullStr |
Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions |
title_full_unstemmed |
Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions |
title_sort |
global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2770 |
publishDate |
2017-03-01 |
description |
Abstract We consider the quasilinear wave equation u t t − △ u t − div ( | ∇ u | α − 2 ∇ u ) − div ( | ∇ u t | β − 2 ∇ u t ) + a | u t | m − 2 u t = b | u | p − 2 u $$u_{tt} -\triangle u_{t} -\operatorname{div}\bigl(\vert \nabla u\vert ^{\alpha-2} \nabla u\bigr) - \operatorname{div}\bigl(\vert \nabla u_{t}\vert ^{\beta-2} \nabla u_{t} \bigr) +a \vert u_{t}\vert ^{m-2} u_{t} =b|u|^{p-2} u $$ a , b > 0 $a,b>0$ , associated with initial and Dirichlet boundary conditions at one part and acoustic boundary conditions at another part, respectively. We prove, under suitable conditions on α, β, m, p and for negative initial energy, a global nonexistence of solutions. |
topic |
quasilinear wave equation blow-up acoustic boundary |
url |
http://link.springer.com/article/10.1186/s13661-017-0773-1 |
work_keys_str_mv |
AT jinmunjeong globalnonexistenceofsolutionsforaquasilinearwaveequationwithacousticboundaryconditions AT jongyeoulpark globalnonexistenceofsolutionsforaquasilinearwaveequationwithacousticboundaryconditions AT yonghankang globalnonexistenceofsolutionsforaquasilinearwaveequationwithacousticboundaryconditions |
_version_ |
1725278236277997568 |