Computer Vision for Continuous Bedside Pharmacological Data Extraction: A Novel Application of Artificial Intelligence for Clinical Data Recording and Biomedical Research
Introduction: As real time data processing is integrated with medical care for traumatic brain injury (TBI) patients, there is a requirement for devices to have digital output. However, there are still many devices that fail to have the required hardware to export real time data into an acceptable d...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-08-01
|
Series: | Frontiers in Big Data |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fdata.2021.689358/full |
id |
doaj-f4a38fa9cbbd4a64b51f6b3017518160 |
---|---|
record_format |
Article |
spelling |
doaj-f4a38fa9cbbd4a64b51f6b30175181602021-09-03T13:06:40ZengFrontiers Media S.A.Frontiers in Big Data2624-909X2021-08-01410.3389/fdata.2021.689358689358Computer Vision for Continuous Bedside Pharmacological Data Extraction: A Novel Application of Artificial Intelligence for Clinical Data Recording and Biomedical ResearchLogan Froese0Joshua Dian1Carleen Batson2Alwyn Gomez3Alwyn Gomez4Amanjyot Singh Sainbhi5Bertram Unger6Frederick A. Zeiler7Frederick A. Zeiler8Frederick A. Zeiler9Frederick A. Zeiler10Frederick A. Zeiler11Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, CanadaSection of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaDepartment of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaSection of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaDepartment of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaBiomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, CanadaSection of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaBiomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, CanadaSection of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaDepartment of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaCentre on Aging, University of Manitoba, Winnipeg, MB, CanadaDivision of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United KingdomIntroduction: As real time data processing is integrated with medical care for traumatic brain injury (TBI) patients, there is a requirement for devices to have digital output. However, there are still many devices that fail to have the required hardware to export real time data into an acceptable digital format or in a continuously updating manner. This is particularly the case for many intravenous pumps and older technological systems. Such accurate and digital real time data integration within TBI care and other fields is critical as we move towards digitizing healthcare information and integrating clinical data streams to improve bedside care. We propose to address this gap in technology by building a system that employs Optical Character Recognition through computer vision, using real time images from a pump monitor to extract the desired real time information.Methods: Using freely available software and readily available technology, we built a script that extracts real time images from a medication pump and then processes them using Optical Character Recognition to create digital text from the image. This text was then transferred to an ICM + real-time monitoring software in parallel with other retrieved physiological data.Results: The prototype that was built works effectively for our device, with source code openly available to interested end-users. However, future work is required for a more universal application of such a system.Conclusion: Advances here can improve medical information collection in the clinical environment, eliminating human error with bedside charting, and aid in data integration for biomedical research where many complex data sets can be seamlessly integrated digitally. Our design demonstrates a simple adaptation of current technology to help with this integration.https://www.frontiersin.org/articles/10.3389/fdata.2021.689358/fullcomputer visionimage modificationopitcal character recognitionsystem integrationdata integration |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Logan Froese Joshua Dian Carleen Batson Alwyn Gomez Alwyn Gomez Amanjyot Singh Sainbhi Bertram Unger Frederick A. Zeiler Frederick A. Zeiler Frederick A. Zeiler Frederick A. Zeiler Frederick A. Zeiler |
spellingShingle |
Logan Froese Joshua Dian Carleen Batson Alwyn Gomez Alwyn Gomez Amanjyot Singh Sainbhi Bertram Unger Frederick A. Zeiler Frederick A. Zeiler Frederick A. Zeiler Frederick A. Zeiler Frederick A. Zeiler Computer Vision for Continuous Bedside Pharmacological Data Extraction: A Novel Application of Artificial Intelligence for Clinical Data Recording and Biomedical Research Frontiers in Big Data computer vision image modification opitcal character recognition system integration data integration |
author_facet |
Logan Froese Joshua Dian Carleen Batson Alwyn Gomez Alwyn Gomez Amanjyot Singh Sainbhi Bertram Unger Frederick A. Zeiler Frederick A. Zeiler Frederick A. Zeiler Frederick A. Zeiler Frederick A. Zeiler |
author_sort |
Logan Froese |
title |
Computer Vision for Continuous Bedside Pharmacological Data Extraction: A Novel Application of Artificial Intelligence for Clinical Data Recording and Biomedical Research |
title_short |
Computer Vision for Continuous Bedside Pharmacological Data Extraction: A Novel Application of Artificial Intelligence for Clinical Data Recording and Biomedical Research |
title_full |
Computer Vision for Continuous Bedside Pharmacological Data Extraction: A Novel Application of Artificial Intelligence for Clinical Data Recording and Biomedical Research |
title_fullStr |
Computer Vision for Continuous Bedside Pharmacological Data Extraction: A Novel Application of Artificial Intelligence for Clinical Data Recording and Biomedical Research |
title_full_unstemmed |
Computer Vision for Continuous Bedside Pharmacological Data Extraction: A Novel Application of Artificial Intelligence for Clinical Data Recording and Biomedical Research |
title_sort |
computer vision for continuous bedside pharmacological data extraction: a novel application of artificial intelligence for clinical data recording and biomedical research |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Big Data |
issn |
2624-909X |
publishDate |
2021-08-01 |
description |
Introduction: As real time data processing is integrated with medical care for traumatic brain injury (TBI) patients, there is a requirement for devices to have digital output. However, there are still many devices that fail to have the required hardware to export real time data into an acceptable digital format or in a continuously updating manner. This is particularly the case for many intravenous pumps and older technological systems. Such accurate and digital real time data integration within TBI care and other fields is critical as we move towards digitizing healthcare information and integrating clinical data streams to improve bedside care. We propose to address this gap in technology by building a system that employs Optical Character Recognition through computer vision, using real time images from a pump monitor to extract the desired real time information.Methods: Using freely available software and readily available technology, we built a script that extracts real time images from a medication pump and then processes them using Optical Character Recognition to create digital text from the image. This text was then transferred to an ICM + real-time monitoring software in parallel with other retrieved physiological data.Results: The prototype that was built works effectively for our device, with source code openly available to interested end-users. However, future work is required for a more universal application of such a system.Conclusion: Advances here can improve medical information collection in the clinical environment, eliminating human error with bedside charting, and aid in data integration for biomedical research where many complex data sets can be seamlessly integrated digitally. Our design demonstrates a simple adaptation of current technology to help with this integration. |
topic |
computer vision image modification opitcal character recognition system integration data integration |
url |
https://www.frontiersin.org/articles/10.3389/fdata.2021.689358/full |
work_keys_str_mv |
AT loganfroese computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT joshuadian computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT carleenbatson computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT alwyngomez computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT alwyngomez computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT amanjyotsinghsainbhi computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT bertramunger computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT frederickazeiler computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT frederickazeiler computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT frederickazeiler computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT frederickazeiler computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch AT frederickazeiler computervisionforcontinuousbedsidepharmacologicaldataextractionanovelapplicationofartificialintelligenceforclinicaldatarecordingandbiomedicalresearch |
_version_ |
1717817261795835904 |