Multiplicity of positive solutions for a gradient system with an exponential nonlinearity
In this article, we consider the problem $$displaylines{ -Delta u = lambda u^{q} + f_1(u,v) quad hbox{in } Omegacr -Delta v = lambda v^{q} + f_{2} (u,v) quad hbox{in } Omegacr u, v > 0 quad hbox{in } Omega cr u = v = 0 quad hbox{on } partialOmega, }$$ where $Omega$ is a bounded domain in $...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2012-12-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2012/236/abstr.html |
id |
doaj-f488fbbc8d0d4d408b77ff62845bb124 |
---|---|
record_format |
Article |
spelling |
doaj-f488fbbc8d0d4d408b77ff62845bb1242020-11-25T00:54:22ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912012-12-012012236,116Multiplicity of positive solutions for a gradient system with an exponential nonlinearityNasreddine MegrezK. SreenadhBrahim KhaldiIn this article, we consider the problem $$displaylines{ -Delta u = lambda u^{q} + f_1(u,v) quad hbox{in } Omegacr -Delta v = lambda v^{q} + f_{2} (u,v) quad hbox{in } Omegacr u, v > 0 quad hbox{in } Omega cr u = v = 0 quad hbox{on } partialOmega, }$$ where $Omega$ is a bounded domain in $mathbb{R}^{2}$, $0<q<1$, and $lambda>0$. We show that there exists a real number $Lambda$ such that the above problem admits at least two solutions for $lambdain(0,Lambda)$, and no solution for $lambda>Lambda$. http://ejde.math.txstate.edu/Volumes/2012/236/abstr.htmlGradient systemexponential nonlinearitymultiplicity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nasreddine Megrez K. Sreenadh Brahim Khaldi |
spellingShingle |
Nasreddine Megrez K. Sreenadh Brahim Khaldi Multiplicity of positive solutions for a gradient system with an exponential nonlinearity Electronic Journal of Differential Equations Gradient system exponential nonlinearity multiplicity |
author_facet |
Nasreddine Megrez K. Sreenadh Brahim Khaldi |
author_sort |
Nasreddine Megrez |
title |
Multiplicity of positive solutions for a gradient system with an exponential nonlinearity |
title_short |
Multiplicity of positive solutions for a gradient system with an exponential nonlinearity |
title_full |
Multiplicity of positive solutions for a gradient system with an exponential nonlinearity |
title_fullStr |
Multiplicity of positive solutions for a gradient system with an exponential nonlinearity |
title_full_unstemmed |
Multiplicity of positive solutions for a gradient system with an exponential nonlinearity |
title_sort |
multiplicity of positive solutions for a gradient system with an exponential nonlinearity |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2012-12-01 |
description |
In this article, we consider the problem $$displaylines{ -Delta u = lambda u^{q} + f_1(u,v) quad hbox{in } Omegacr -Delta v = lambda v^{q} + f_{2} (u,v) quad hbox{in } Omegacr u, v > 0 quad hbox{in } Omega cr u = v = 0 quad hbox{on } partialOmega, }$$ where $Omega$ is a bounded domain in $mathbb{R}^{2}$, $0<q<1$, and $lambda>0$. We show that there exists a real number $Lambda$ such that the above problem admits at least two solutions for $lambdain(0,Lambda)$, and no solution for $lambda>Lambda$. |
topic |
Gradient system exponential nonlinearity multiplicity |
url |
http://ejde.math.txstate.edu/Volumes/2012/236/abstr.html |
work_keys_str_mv |
AT nasreddinemegrez multiplicityofpositivesolutionsforagradientsystemwithanexponentialnonlinearity AT ksreenadh multiplicityofpositivesolutionsforagradientsystemwithanexponentialnonlinearity AT brahimkhaldi multiplicityofpositivesolutionsforagradientsystemwithanexponentialnonlinearity |
_version_ |
1725234486200762368 |