Multiplicity of positive solutions for a gradient system with an exponential nonlinearity

In this article, we consider the problem $$displaylines{ -Delta u = lambda u^{q} + f_1(u,v) quad hbox{in } Omegacr -Delta v = lambda v^{q} + f_{2} (u,v) quad hbox{in } Omegacr u, v > 0 quad hbox{in } Omega cr u = v = 0 quad hbox{on } partialOmega, }$$ where $Omega$ is a bounded domain in $...

Full description

Bibliographic Details
Main Authors: Nasreddine Megrez, K. Sreenadh, Brahim Khaldi
Format: Article
Language:English
Published: Texas State University 2012-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2012/236/abstr.html
id doaj-f488fbbc8d0d4d408b77ff62845bb124
record_format Article
spelling doaj-f488fbbc8d0d4d408b77ff62845bb1242020-11-25T00:54:22ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912012-12-012012236,116Multiplicity of positive solutions for a gradient system with an exponential nonlinearityNasreddine MegrezK. SreenadhBrahim KhaldiIn this article, we consider the problem $$displaylines{ -Delta u = lambda u^{q} + f_1(u,v) quad hbox{in } Omegacr -Delta v = lambda v^{q} + f_{2} (u,v) quad hbox{in } Omegacr u, v > 0 quad hbox{in } Omega cr u = v = 0 quad hbox{on } partialOmega, }$$ where $Omega$ is a bounded domain in $mathbb{R}^{2}$, $0<q<1$, and $lambda>0$. We show that there exists a real number $Lambda$ such that the above problem admits at least two solutions for $lambdain(0,Lambda)$, and no solution for $lambda>Lambda$. http://ejde.math.txstate.edu/Volumes/2012/236/abstr.htmlGradient systemexponential nonlinearitymultiplicity
collection DOAJ
language English
format Article
sources DOAJ
author Nasreddine Megrez
K. Sreenadh
Brahim Khaldi
spellingShingle Nasreddine Megrez
K. Sreenadh
Brahim Khaldi
Multiplicity of positive solutions for a gradient system with an exponential nonlinearity
Electronic Journal of Differential Equations
Gradient system
exponential nonlinearity
multiplicity
author_facet Nasreddine Megrez
K. Sreenadh
Brahim Khaldi
author_sort Nasreddine Megrez
title Multiplicity of positive solutions for a gradient system with an exponential nonlinearity
title_short Multiplicity of positive solutions for a gradient system with an exponential nonlinearity
title_full Multiplicity of positive solutions for a gradient system with an exponential nonlinearity
title_fullStr Multiplicity of positive solutions for a gradient system with an exponential nonlinearity
title_full_unstemmed Multiplicity of positive solutions for a gradient system with an exponential nonlinearity
title_sort multiplicity of positive solutions for a gradient system with an exponential nonlinearity
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2012-12-01
description In this article, we consider the problem $$displaylines{ -Delta u = lambda u^{q} + f_1(u,v) quad hbox{in } Omegacr -Delta v = lambda v^{q} + f_{2} (u,v) quad hbox{in } Omegacr u, v > 0 quad hbox{in } Omega cr u = v = 0 quad hbox{on } partialOmega, }$$ where $Omega$ is a bounded domain in $mathbb{R}^{2}$, $0<q<1$, and $lambda>0$. We show that there exists a real number $Lambda$ such that the above problem admits at least two solutions for $lambdain(0,Lambda)$, and no solution for $lambda>Lambda$.
topic Gradient system
exponential nonlinearity
multiplicity
url http://ejde.math.txstate.edu/Volumes/2012/236/abstr.html
work_keys_str_mv AT nasreddinemegrez multiplicityofpositivesolutionsforagradientsystemwithanexponentialnonlinearity
AT ksreenadh multiplicityofpositivesolutionsforagradientsystemwithanexponentialnonlinearity
AT brahimkhaldi multiplicityofpositivesolutionsforagradientsystemwithanexponentialnonlinearity
_version_ 1725234486200762368