When Will a Sequence of Points in a Riemannian Submanifold Converge?

Let X be a Riemannian manifold and <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula> a sequence of points in X. Assume that we know a priori some pr...

Full description

Bibliographic Details
Main Author: Tuyen Trung Truong
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/11/1934
id doaj-f47894538ebd44208db26d16397a5053
record_format Article
spelling doaj-f47894538ebd44208db26d16397a50532020-11-25T04:06:54ZengMDPI AGMathematics2227-73902020-11-0181934193410.3390/math8111934When Will a Sequence of Points in a Riemannian Submanifold Converge?Tuyen Trung Truong0Department of Mathematics, University of Oslo, Blindern, 0851 Oslo, NorwayLet X be a Riemannian manifold and <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula> a sequence of points in X. Assume that we know a priori some properties of the set A of cluster points of <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula>. The question is under what conditions that <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula> will converge. An answer to this question serves to understand the convergence behaviour for iterative algorithms for (constrained) optimisation problems, with many applications such as in Deep Learning. We will explore this question, and show by some examples that having X a submanifold (more generally, a metric subspace) of a good Riemannian manifold (even in infinite dimensions) can greatly help.https://www.mdpi.com/2227-7390/8/11/1934compact metric spacedeep neural networksrandom dynamical systemsglobal convergence of Gradient Descentiterative optimisationNash conjecture
collection DOAJ
language English
format Article
sources DOAJ
author Tuyen Trung Truong
spellingShingle Tuyen Trung Truong
When Will a Sequence of Points in a Riemannian Submanifold Converge?
Mathematics
compact metric space
deep neural networks
random dynamical systems
global convergence of Gradient Descent
iterative optimisation
Nash conjecture
author_facet Tuyen Trung Truong
author_sort Tuyen Trung Truong
title When Will a Sequence of Points in a Riemannian Submanifold Converge?
title_short When Will a Sequence of Points in a Riemannian Submanifold Converge?
title_full When Will a Sequence of Points in a Riemannian Submanifold Converge?
title_fullStr When Will a Sequence of Points in a Riemannian Submanifold Converge?
title_full_unstemmed When Will a Sequence of Points in a Riemannian Submanifold Converge?
title_sort when will a sequence of points in a riemannian submanifold converge?
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-11-01
description Let X be a Riemannian manifold and <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula> a sequence of points in X. Assume that we know a priori some properties of the set A of cluster points of <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula>. The question is under what conditions that <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula> will converge. An answer to this question serves to understand the convergence behaviour for iterative algorithms for (constrained) optimisation problems, with many applications such as in Deep Learning. We will explore this question, and show by some examples that having X a submanifold (more generally, a metric subspace) of a good Riemannian manifold (even in infinite dimensions) can greatly help.
topic compact metric space
deep neural networks
random dynamical systems
global convergence of Gradient Descent
iterative optimisation
Nash conjecture
url https://www.mdpi.com/2227-7390/8/11/1934
work_keys_str_mv AT tuyentrungtruong whenwillasequenceofpointsinariemanniansubmanifoldconverge
_version_ 1724430331951448064