When Will a Sequence of Points in a Riemannian Submanifold Converge?
Let X be a Riemannian manifold and <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula> a sequence of points in X. Assume that we know a priori some pr...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/11/1934 |
id |
doaj-f47894538ebd44208db26d16397a5053 |
---|---|
record_format |
Article |
spelling |
doaj-f47894538ebd44208db26d16397a50532020-11-25T04:06:54ZengMDPI AGMathematics2227-73902020-11-0181934193410.3390/math8111934When Will a Sequence of Points in a Riemannian Submanifold Converge?Tuyen Trung Truong0Department of Mathematics, University of Oslo, Blindern, 0851 Oslo, NorwayLet X be a Riemannian manifold and <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula> a sequence of points in X. Assume that we know a priori some properties of the set A of cluster points of <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula>. The question is under what conditions that <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula> will converge. An answer to this question serves to understand the convergence behaviour for iterative algorithms for (constrained) optimisation problems, with many applications such as in Deep Learning. We will explore this question, and show by some examples that having X a submanifold (more generally, a metric subspace) of a good Riemannian manifold (even in infinite dimensions) can greatly help.https://www.mdpi.com/2227-7390/8/11/1934compact metric spacedeep neural networksrandom dynamical systemsglobal convergence of Gradient Descentiterative optimisationNash conjecture |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tuyen Trung Truong |
spellingShingle |
Tuyen Trung Truong When Will a Sequence of Points in a Riemannian Submanifold Converge? Mathematics compact metric space deep neural networks random dynamical systems global convergence of Gradient Descent iterative optimisation Nash conjecture |
author_facet |
Tuyen Trung Truong |
author_sort |
Tuyen Trung Truong |
title |
When Will a Sequence of Points in a Riemannian Submanifold Converge? |
title_short |
When Will a Sequence of Points in a Riemannian Submanifold Converge? |
title_full |
When Will a Sequence of Points in a Riemannian Submanifold Converge? |
title_fullStr |
When Will a Sequence of Points in a Riemannian Submanifold Converge? |
title_full_unstemmed |
When Will a Sequence of Points in a Riemannian Submanifold Converge? |
title_sort |
when will a sequence of points in a riemannian submanifold converge? |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-11-01 |
description |
Let X be a Riemannian manifold and <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula> a sequence of points in X. Assume that we know a priori some properties of the set A of cluster points of <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula>. The question is under what conditions that <inline-formula><math display="inline"><semantics><msub><mi>x</mi><mi>n</mi></msub></semantics></math></inline-formula> will converge. An answer to this question serves to understand the convergence behaviour for iterative algorithms for (constrained) optimisation problems, with many applications such as in Deep Learning. We will explore this question, and show by some examples that having X a submanifold (more generally, a metric subspace) of a good Riemannian manifold (even in infinite dimensions) can greatly help. |
topic |
compact metric space deep neural networks random dynamical systems global convergence of Gradient Descent iterative optimisation Nash conjecture |
url |
https://www.mdpi.com/2227-7390/8/11/1934 |
work_keys_str_mv |
AT tuyentrungtruong whenwillasequenceofpointsinariemanniansubmanifoldconverge |
_version_ |
1724430331951448064 |