A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study
Background: To explore the prognostic value of radiomics-based and digital pathology-based imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic whole-slide images for patients with nasopharyngeal carcinoma (NPC). Methods: We recruited 220 NPC patients and divided them...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2020-12-01
|
Series: | Therapeutic Advances in Medical Oncology |
Online Access: | https://doi.org/10.1177/1758835920971416 |
id |
doaj-f478636085984139a54a1e51d0765ef5 |
---|---|
record_format |
Article |
spelling |
doaj-f478636085984139a54a1e51d0765ef52020-12-15T01:33:22ZengSAGE PublishingTherapeutic Advances in Medical Oncology1758-83592020-12-011210.1177/1758835920971416A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort studyFan ZhangLian-Zhen ZhongXun ZhaoDi DongJi-Jin YaoSi-Yang WangYe LiuDing ZhuYin WangGuo-Jie WangYi-Ming WangDan LiJiang WeiJie TianHong ShanBackground: To explore the prognostic value of radiomics-based and digital pathology-based imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic whole-slide images for patients with nasopharyngeal carcinoma (NPC). Methods: We recruited 220 NPC patients and divided them into training ( n = 132), internal test ( n = 44), and external test ( n = 44) cohorts. The primary endpoint was failure-free survival (FFS). Radiomic features were extracted from pretreatment MRI and selected and integrated into a radiomic signature. The histopathological signature was extracted from whole-slide images of biopsy specimens using an end-to-end deep-learning method. Incorporating two signatures and independent clinical factors, a multi-scale nomogram was constructed. We also tested the correlation between the key imaging features and genetic alternations in an independent cohort of 16 patients (biological test cohort). Results: Both radiomic and histopathologic signatures presented significant associations with treatment failure in the three cohorts (C-index: 0.689–0.779, all p < 0.050). The multi-scale nomogram showed a consistent significant improvement for predicting treatment failure compared with the clinical model in the training (C-index: 0.817 versus 0.730, p < 0.050), internal test (C-index: 0.828 versus 0.602, p < 0.050) and external test (C-index: 0.834 versus 0.679, p < 0.050) cohorts. Furthermore, patients were stratified successfully into two groups with distinguishable prognosis (log-rank p < 0.0010) using our nomogram. We also found that two texture features were related to the genetic alternations of chromatin remodeling pathways in another independent cohort. Conclusion: The multi-scale imaging features showed a complementary value in prognostic prediction and may improve individualized treatment in NPC.https://doi.org/10.1177/1758835920971416 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fan Zhang Lian-Zhen Zhong Xun Zhao Di Dong Ji-Jin Yao Si-Yang Wang Ye Liu Ding Zhu Yin Wang Guo-Jie Wang Yi-Ming Wang Dan Li Jiang Wei Jie Tian Hong Shan |
spellingShingle |
Fan Zhang Lian-Zhen Zhong Xun Zhao Di Dong Ji-Jin Yao Si-Yang Wang Ye Liu Ding Zhu Yin Wang Guo-Jie Wang Yi-Ming Wang Dan Li Jiang Wei Jie Tian Hong Shan A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study Therapeutic Advances in Medical Oncology |
author_facet |
Fan Zhang Lian-Zhen Zhong Xun Zhao Di Dong Ji-Jin Yao Si-Yang Wang Ye Liu Ding Zhu Yin Wang Guo-Jie Wang Yi-Ming Wang Dan Li Jiang Wei Jie Tian Hong Shan |
author_sort |
Fan Zhang |
title |
A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study |
title_short |
A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study |
title_full |
A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study |
title_fullStr |
A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study |
title_full_unstemmed |
A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study |
title_sort |
deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study |
publisher |
SAGE Publishing |
series |
Therapeutic Advances in Medical Oncology |
issn |
1758-8359 |
publishDate |
2020-12-01 |
description |
Background: To explore the prognostic value of radiomics-based and digital pathology-based imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic whole-slide images for patients with nasopharyngeal carcinoma (NPC). Methods: We recruited 220 NPC patients and divided them into training ( n = 132), internal test ( n = 44), and external test ( n = 44) cohorts. The primary endpoint was failure-free survival (FFS). Radiomic features were extracted from pretreatment MRI and selected and integrated into a radiomic signature. The histopathological signature was extracted from whole-slide images of biopsy specimens using an end-to-end deep-learning method. Incorporating two signatures and independent clinical factors, a multi-scale nomogram was constructed. We also tested the correlation between the key imaging features and genetic alternations in an independent cohort of 16 patients (biological test cohort). Results: Both radiomic and histopathologic signatures presented significant associations with treatment failure in the three cohorts (C-index: 0.689–0.779, all p < 0.050). The multi-scale nomogram showed a consistent significant improvement for predicting treatment failure compared with the clinical model in the training (C-index: 0.817 versus 0.730, p < 0.050), internal test (C-index: 0.828 versus 0.602, p < 0.050) and external test (C-index: 0.834 versus 0.679, p < 0.050) cohorts. Furthermore, patients were stratified successfully into two groups with distinguishable prognosis (log-rank p < 0.0010) using our nomogram. We also found that two texture features were related to the genetic alternations of chromatin remodeling pathways in another independent cohort. Conclusion: The multi-scale imaging features showed a complementary value in prognostic prediction and may improve individualized treatment in NPC. |
url |
https://doi.org/10.1177/1758835920971416 |
work_keys_str_mv |
AT fanzhang adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT lianzhenzhong adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT xunzhao adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT didong adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT jijinyao adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT siyangwang adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT yeliu adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT dingzhu adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT yinwang adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT guojiewang adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT yimingwang adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT danli adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT jiangwei adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT jietian adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT hongshan adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT fanzhang deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT lianzhenzhong deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT xunzhao deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT didong deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT jijinyao deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT siyangwang deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT yeliu deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT dingzhu deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT yinwang deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT guojiewang deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT yimingwang deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT danli deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT jiangwei deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT jietian deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy AT hongshan deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy |
_version_ |
1724382972262481920 |