Multicriteria analysis for sources of renewable energy using data from remote sensing

Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from remote sensing can provide information for multicriteria analysis for sources of renewable energy. Advanced land cover quantification makes it possibl...

Full description

Bibliographic Details
Main Author: L. Matejicek
Format: Article
Language:English
Published: Copernicus Publications 2015-04-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/889/2015/isprsarchives-XL-7-W3-889-2015.pdf
id doaj-f46e7af9f4394fb3a51863bc8e8bdd87
record_format Article
spelling doaj-f46e7af9f4394fb3a51863bc8e8bdd872020-11-24T23:58:47ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342015-04-01XL-7/W388989610.5194/isprsarchives-XL-7-W3-889-2015Multicriteria analysis for sources of renewable energy using data from remote sensingL. Matejicek0Institute for Environmental Studies, Charles University in Prague, Czech RepublicRenewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from remote sensing can provide information for multicriteria analysis for sources of renewable energy. Advanced land cover quantification makes it possible to search for suitable sites. Multicriteria analysis, together with other data, is used to determine the energy potential and socially acceptability of suggested locations. The described case study is focused on an area of surface coal mines in the northwestern region of the Czech Republic, where the impacts of surface mining and reclamation constitute a dominant force in land cover changes. High resolution satellite images represent the main input datasets for identification of suitable sites. Solar mapping, wind predictions, the location of weirs in watersheds, road maps and demographic information complement the data from remote sensing for multicriteria analysis, which is implemented in a geographic information system (GIS). The input spatial datasets for multicriteria analysis in GIS are reclassified to a common scale and processed with raster algebra tools to identify suitable sites for sources of renewable energy. The selection of suitable sites is limited by the CORINE land cover database to mining and agricultural areas. The case study is focused on long term land cover changes in the 1985-2015 period. Multicriteria analysis based on CORINE data shows moderate changes in mapping of suitable sites for utilization of selected sources of renewable energy in 1990, 2000, 2006 and 2012. The results represent map layers showing the energy potential on a scale of a few preference classes (1-7), where the first class is linked to minimum preference and the last class to maximum preference. The attached histograms show the moderate variability of preference classes due to land cover changes caused by mining activities. The results also show a slight increase in the more preferred classes for utilization of sources of renewable energy due to an increase area of reclaimed sites. Using data from remote sensing, such as the multispectral images and the CORINE land cover datasets, can reduce the financial resources currently required for finding and assessing suitable areas.http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/889/2015/isprsarchives-XL-7-W3-889-2015.pdf
collection DOAJ
language English
format Article
sources DOAJ
author L. Matejicek
spellingShingle L. Matejicek
Multicriteria analysis for sources of renewable energy using data from remote sensing
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
author_facet L. Matejicek
author_sort L. Matejicek
title Multicriteria analysis for sources of renewable energy using data from remote sensing
title_short Multicriteria analysis for sources of renewable energy using data from remote sensing
title_full Multicriteria analysis for sources of renewable energy using data from remote sensing
title_fullStr Multicriteria analysis for sources of renewable energy using data from remote sensing
title_full_unstemmed Multicriteria analysis for sources of renewable energy using data from remote sensing
title_sort multicriteria analysis for sources of renewable energy using data from remote sensing
publisher Copernicus Publications
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
issn 1682-1750
2194-9034
publishDate 2015-04-01
description Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from remote sensing can provide information for multicriteria analysis for sources of renewable energy. Advanced land cover quantification makes it possible to search for suitable sites. Multicriteria analysis, together with other data, is used to determine the energy potential and socially acceptability of suggested locations. The described case study is focused on an area of surface coal mines in the northwestern region of the Czech Republic, where the impacts of surface mining and reclamation constitute a dominant force in land cover changes. High resolution satellite images represent the main input datasets for identification of suitable sites. Solar mapping, wind predictions, the location of weirs in watersheds, road maps and demographic information complement the data from remote sensing for multicriteria analysis, which is implemented in a geographic information system (GIS). The input spatial datasets for multicriteria analysis in GIS are reclassified to a common scale and processed with raster algebra tools to identify suitable sites for sources of renewable energy. The selection of suitable sites is limited by the CORINE land cover database to mining and agricultural areas. The case study is focused on long term land cover changes in the 1985-2015 period. Multicriteria analysis based on CORINE data shows moderate changes in mapping of suitable sites for utilization of selected sources of renewable energy in 1990, 2000, 2006 and 2012. The results represent map layers showing the energy potential on a scale of a few preference classes (1-7), where the first class is linked to minimum preference and the last class to maximum preference. The attached histograms show the moderate variability of preference classes due to land cover changes caused by mining activities. The results also show a slight increase in the more preferred classes for utilization of sources of renewable energy due to an increase area of reclaimed sites. Using data from remote sensing, such as the multispectral images and the CORINE land cover datasets, can reduce the financial resources currently required for finding and assessing suitable areas.
url http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/889/2015/isprsarchives-XL-7-W3-889-2015.pdf
work_keys_str_mv AT lmatejicek multicriteriaanalysisforsourcesofrenewableenergyusingdatafromremotesensing
_version_ 1725449831828160512