Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions
<p>An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of the...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-01-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/181/2019/acp-19-181-2019.pdf |
id |
doaj-f4651cf4dbf94d349e27008898b0ac4c |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
G. Curci G. Curci U. Alyuz R. Barò R. Bianconi J. Bieser J. H. Christensen A. Colette A. Farrow X. Francis P. Jiménez-Guerrero U. Im P. Liu A. Manders L. Palacios-Peña M. Prank M. Prank L. Pozzoli L. Pozzoli R. Sokhi E. Solazzo P. Tuccella P. Tuccella A. Unal M. G. Vivanco C. Hogrefe S. Galmarini |
spellingShingle |
G. Curci G. Curci U. Alyuz R. Barò R. Bianconi J. Bieser J. H. Christensen A. Colette A. Farrow X. Francis P. Jiménez-Guerrero U. Im P. Liu A. Manders L. Palacios-Peña M. Prank M. Prank L. Pozzoli L. Pozzoli R. Sokhi E. Solazzo P. Tuccella P. Tuccella A. Unal M. G. Vivanco C. Hogrefe S. Galmarini Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions Atmospheric Chemistry and Physics |
author_facet |
G. Curci G. Curci U. Alyuz R. Barò R. Bianconi J. Bieser J. H. Christensen A. Colette A. Farrow X. Francis P. Jiménez-Guerrero U. Im P. Liu A. Manders L. Palacios-Peña M. Prank M. Prank L. Pozzoli L. Pozzoli R. Sokhi E. Solazzo P. Tuccella P. Tuccella A. Unal M. G. Vivanco C. Hogrefe S. Galmarini |
author_sort |
G. Curci |
title |
Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions |
title_short |
Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions |
title_full |
Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions |
title_fullStr |
Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions |
title_full_unstemmed |
Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions |
title_sort |
modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2019-01-01 |
description |
<p>An accurate simulation of the absorption properties is key for assessing the
radiative effects of aerosol on meteorology and climate. The representation
of how chemical species are mixed inside the particles (the mixing state) is
one of the major uncertainty factors in the assessment of these effects. Here
we compare aerosol optical properties simulations over Europe and North
America, coordinated in the framework of the third phase of the Air Quality
Model Evaluation International Initiative (AQMEII), to 1 year of AERONET
sunphotometer retrievals, in an attempt to identify a mixing state
representation that better reproduces the observed single scattering albedo
and its spectral variation. We use a single post-processing tool (FlexAOD) to
derive aerosol optical properties from simulated aerosol speciation profiles,
and focus on the absorption enhancement of black carbon when it is internally
mixed with more scattering material, discarding from the analysis scenes
dominated by dust.</p>
<p>We found that the single scattering albedo at 440 nm (<span class="inline-formula"><i>ω</i><sub>0,440</sub>)</span> is
on average overestimated (underestimated) by 3–5 % when external
(core-shell internal) mixing of particles<span id="page182"/> is assumed, a bias comparable in
magnitude with the typical variability of the quantity. The (unphysical)
homogeneous internal mixing assumption underestimates <span class="inline-formula"><i>ω</i><sub>0,440</sub></span> by
<span class="inline-formula">∼14</span> %. The combination of external and core-shell configurations
(partial internal mixing), parameterized using a simplified function of air
mass aging, reduces the <span class="inline-formula"><i>ω</i><sub>0,440</sub></span> bias to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1</mn><mo>/</mo><mo>-</mo><mn mathvariant="normal">3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="39pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ed67d70e5b0265304da1b69b819dd11d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-181-2019-ie00001.svg" width="39pt" height="14pt" src="acp-19-181-2019-ie00001.png"/></svg:svg></span></span> %. The black
carbon absorption enhancement (<span class="inline-formula"><i>E</i><sub>abs</sub>)</span> in core-shell with respect to
the externally mixed state is in the range 1.8–2.5, which is above the
currently most accepted upper limit of <span class="inline-formula">∼1.5</span>. The partial internal
mixing reduces <span class="inline-formula"><i>E</i><sub>abs</sub></span> to values more consistent with this limit.
However, the spectral dependence of the absorption is not well reproduced,
and the absorption Ångström exponent AAE<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">675</mn><mn mathvariant="normal">440</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="16pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="f40632cc1b94d2fa6ba42353b246d109"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-181-2019-ie00002.svg" width="16pt" height="17pt" src="acp-19-181-2019-ie00002.png"/></svg:svg></span></span> is
overestimated by 70–120 %. Further testing against more comprehensive
campaign data, including a full characterization of the aerosol profile in
terms of chemical speciation, mixing state, and related optical properties,
would help in putting a better constraint on these calculations.</p> |
url |
https://www.atmos-chem-phys.net/19/181/2019/acp-19-181-2019.pdf |
work_keys_str_mv |
AT gcurci modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT gcurci modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT ualyuz modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT rbaro modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT rbianconi modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT jbieser modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT jhchristensen modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT acolette modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT afarrow modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT xfrancis modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT pjimenezguerrero modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT uim modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT pliu modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT amanders modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT lpalaciospena modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT mprank modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT mprank modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT lpozzoli modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT lpozzoli modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT rsokhi modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT esolazzo modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT ptuccella modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT ptuccella modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT aunal modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT mgvivanco modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT chogrefe modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions AT sgalmarini modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions |
_version_ |
1725331922505170944 |
spelling |
doaj-f4651cf4dbf94d349e27008898b0ac4c2020-11-25T00:29:20ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-01-011918120410.5194/acp-19-181-2019Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptionsG. Curci0G. Curci1U. Alyuz2R. Barò3R. Bianconi4J. Bieser5J. H. Christensen6A. Colette7A. Farrow8X. Francis9P. Jiménez-Guerrero10U. Im11P. Liu12A. Manders13L. Palacios-Peña14M. Prank15M. Prank16L. Pozzoli17L. Pozzoli18R. Sokhi19E. Solazzo20P. Tuccella21P. Tuccella22A. Unal23M. G. Vivanco24C. Hogrefe25S. Galmarini26Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, ItalyCenter of Excellence in Telesening of Environment and Model Prediction of Severe Events (CETEMPS), University of L'Aquila, L'Aquila (AQ), ItalyEurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Istanbul, TurkeyDepartment of Physics, University of Murcia, Murcia, 30003, SpainEnviroware s.r.l., Concorezzo (MB), 20863, ItalyHelmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Geesthacht, 21502, GermanyAtmospheric Modelling Secton (ATMO), Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, DenmarkAtmospheric Modelling and Environmental Mapping Unit, INERIS, BP2, Verneuil-en-Halatte, 60550, FranceCentre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire College Lane, Hatfield, AL10 9AB, UKCentre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire College Lane, Hatfield, AL10 9AB, UKDepartment of Physics, University of Murcia, Murcia, 30003, SpainAtmospheric Modelling Secton (ATMO), Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, DenmarkNRC Research Associate at Computational Exposure Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, USATNO, PO Box 80015, 3508 TA Utrecht, the NetherlandsDepartment of Physics, University of Murcia, Murcia, 30003, SpainFinnish Meteorological Institute, Atmospheric Composition Research Unit, Helsinki, 00560, FinlandCornell University, Department of Earth and Atmospheric Sciences, Ithaca, 14853 NY, USAEurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Istanbul, TurkeyCornell University, Department of Earth and Atmospheric Sciences, Ithaca, 14853 NY, USACentre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire College Lane, Hatfield, AL10 9AB, UKJoint Research Centre (JRC), European Commission, Ispra (VA), 21027, ItalyDepartment of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, ItalyCenter of Excellence in Telesening of Environment and Model Prediction of Severe Events (CETEMPS), University of L'Aquila, L'Aquila (AQ), ItalyEurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Istanbul, TurkeyCIEMAT, Madrid, 28040, SpainComputational Exposure Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, USAJoint Research Centre (JRC), European Commission, Ispra (VA), 21027, Italy<p>An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of these effects. Here we compare aerosol optical properties simulations over Europe and North America, coordinated in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII), to 1 year of AERONET sunphotometer retrievals, in an attempt to identify a mixing state representation that better reproduces the observed single scattering albedo and its spectral variation. We use a single post-processing tool (FlexAOD) to derive aerosol optical properties from simulated aerosol speciation profiles, and focus on the absorption enhancement of black carbon when it is internally mixed with more scattering material, discarding from the analysis scenes dominated by dust.</p> <p>We found that the single scattering albedo at 440 nm (<span class="inline-formula"><i>ω</i><sub>0,440</sub>)</span> is on average overestimated (underestimated) by 3–5 % when external (core-shell internal) mixing of particles<span id="page182"/> is assumed, a bias comparable in magnitude with the typical variability of the quantity. The (unphysical) homogeneous internal mixing assumption underestimates <span class="inline-formula"><i>ω</i><sub>0,440</sub></span> by <span class="inline-formula">∼14</span> %. The combination of external and core-shell configurations (partial internal mixing), parameterized using a simplified function of air mass aging, reduces the <span class="inline-formula"><i>ω</i><sub>0,440</sub></span> bias to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1</mn><mo>/</mo><mo>-</mo><mn mathvariant="normal">3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="39pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ed67d70e5b0265304da1b69b819dd11d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-181-2019-ie00001.svg" width="39pt" height="14pt" src="acp-19-181-2019-ie00001.png"/></svg:svg></span></span> %. The black carbon absorption enhancement (<span class="inline-formula"><i>E</i><sub>abs</sub>)</span> in core-shell with respect to the externally mixed state is in the range 1.8–2.5, which is above the currently most accepted upper limit of <span class="inline-formula">∼1.5</span>. The partial internal mixing reduces <span class="inline-formula"><i>E</i><sub>abs</sub></span> to values more consistent with this limit. However, the spectral dependence of the absorption is not well reproduced, and the absorption Ångström exponent AAE<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">675</mn><mn mathvariant="normal">440</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="16pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="f40632cc1b94d2fa6ba42353b246d109"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-181-2019-ie00002.svg" width="16pt" height="17pt" src="acp-19-181-2019-ie00002.png"/></svg:svg></span></span> is overestimated by 70–120 %. Further testing against more comprehensive campaign data, including a full characterization of the aerosol profile in terms of chemical speciation, mixing state, and related optical properties, would help in putting a better constraint on these calculations.</p>https://www.atmos-chem-phys.net/19/181/2019/acp-19-181-2019.pdf |