Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions

<p>An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of the...

Full description

Bibliographic Details
Main Authors: G. Curci, U. Alyuz, R. Barò, R. Bianconi, J. Bieser, J. H. Christensen, A. Colette, A. Farrow, X. Francis, P. Jiménez-Guerrero, U. Im, P. Liu, A. Manders, L. Palacios-Peña, M. Prank, L. Pozzoli, R. Sokhi, E. Solazzo, P. Tuccella, A. Unal, M. G. Vivanco, C. Hogrefe, S. Galmarini
Format: Article
Language:English
Published: Copernicus Publications 2019-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/181/2019/acp-19-181-2019.pdf
id doaj-f4651cf4dbf94d349e27008898b0ac4c
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author G. Curci
G. Curci
U. Alyuz
R. Barò
R. Bianconi
J. Bieser
J. H. Christensen
A. Colette
A. Farrow
X. Francis
P. Jiménez-Guerrero
U. Im
P. Liu
A. Manders
L. Palacios-Peña
M. Prank
M. Prank
L. Pozzoli
L. Pozzoli
R. Sokhi
E. Solazzo
P. Tuccella
P. Tuccella
A. Unal
M. G. Vivanco
C. Hogrefe
S. Galmarini
spellingShingle G. Curci
G. Curci
U. Alyuz
R. Barò
R. Bianconi
J. Bieser
J. H. Christensen
A. Colette
A. Farrow
X. Francis
P. Jiménez-Guerrero
U. Im
P. Liu
A. Manders
L. Palacios-Peña
M. Prank
M. Prank
L. Pozzoli
L. Pozzoli
R. Sokhi
E. Solazzo
P. Tuccella
P. Tuccella
A. Unal
M. G. Vivanco
C. Hogrefe
S. Galmarini
Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions
Atmospheric Chemistry and Physics
author_facet G. Curci
G. Curci
U. Alyuz
R. Barò
R. Bianconi
J. Bieser
J. H. Christensen
A. Colette
A. Farrow
X. Francis
P. Jiménez-Guerrero
U. Im
P. Liu
A. Manders
L. Palacios-Peña
M. Prank
M. Prank
L. Pozzoli
L. Pozzoli
R. Sokhi
E. Solazzo
P. Tuccella
P. Tuccella
A. Unal
M. G. Vivanco
C. Hogrefe
S. Galmarini
author_sort G. Curci
title Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions
title_short Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions
title_full Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions
title_fullStr Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions
title_full_unstemmed Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions
title_sort modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-01-01
description <p>An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of these effects. Here we compare aerosol optical properties simulations over Europe and North America, coordinated in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII), to 1 year of AERONET sunphotometer retrievals, in an attempt to identify a mixing state representation that better reproduces the observed single scattering albedo and its spectral variation. We use a single post-processing tool (FlexAOD) to derive aerosol optical properties from simulated aerosol speciation profiles, and focus on the absorption enhancement of black carbon when it is internally mixed with more scattering material, discarding from the analysis scenes dominated by dust.</p> <p>We found that the single scattering albedo at 440&thinsp;nm (<span class="inline-formula"><i>ω</i><sub>0,440</sub>)</span> is on average overestimated (underestimated) by 3–5&thinsp;% when external (core-shell internal) mixing of particles<span id="page182"/> is assumed, a bias comparable in magnitude with the typical variability of the quantity. The (unphysical) homogeneous internal mixing assumption underestimates <span class="inline-formula"><i>ω</i><sub>0,440</sub></span> by <span class="inline-formula">∼14</span>&thinsp;%. The combination of external and core-shell configurations (partial internal mixing), parameterized using a simplified function of air mass aging, reduces the <span class="inline-formula"><i>ω</i><sub>0,440</sub></span> bias to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1</mn><mo>/</mo><mo>-</mo><mn mathvariant="normal">3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="39pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ed67d70e5b0265304da1b69b819dd11d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-181-2019-ie00001.svg" width="39pt" height="14pt" src="acp-19-181-2019-ie00001.png"/></svg:svg></span></span>&thinsp;%. The black carbon absorption enhancement (<span class="inline-formula"><i>E</i><sub>abs</sub>)</span> in core-shell with respect to the externally mixed state is in the range 1.8–2.5, which is above the currently most accepted upper limit of <span class="inline-formula">∼1.5</span>. The partial internal mixing reduces <span class="inline-formula"><i>E</i><sub>abs</sub></span> to values more consistent with this limit. However, the spectral dependence of the absorption is not well reproduced, and the absorption Ångström exponent AAE<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">675</mn><mn mathvariant="normal">440</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="16pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="f40632cc1b94d2fa6ba42353b246d109"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-181-2019-ie00002.svg" width="16pt" height="17pt" src="acp-19-181-2019-ie00002.png"/></svg:svg></span></span> is overestimated by 70–120&thinsp;%. Further testing against more comprehensive campaign data, including a full characterization of the aerosol profile in terms of chemical speciation, mixing state, and related optical properties, would help in putting a better constraint on these calculations.</p>
url https://www.atmos-chem-phys.net/19/181/2019/acp-19-181-2019.pdf
work_keys_str_mv AT gcurci modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT gcurci modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT ualyuz modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT rbaro modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT rbianconi modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT jbieser modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT jhchristensen modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT acolette modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT afarrow modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT xfrancis modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT pjimenezguerrero modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT uim modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT pliu modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT amanders modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT lpalaciospena modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT mprank modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT mprank modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT lpozzoli modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT lpozzoli modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT rsokhi modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT esolazzo modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT ptuccella modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT ptuccella modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT aunal modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT mgvivanco modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT chogrefe modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
AT sgalmarini modellingblackcarbonabsorptionofsolarradiationcombiningexternalandinternalmixingassumptions
_version_ 1725331922505170944
spelling doaj-f4651cf4dbf94d349e27008898b0ac4c2020-11-25T00:29:20ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-01-011918120410.5194/acp-19-181-2019Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptionsG. Curci0G. Curci1U. Alyuz2R. Barò3R. Bianconi4J. Bieser5J. H. Christensen6A. Colette7A. Farrow8X. Francis9P. Jiménez-Guerrero10U. Im11P. Liu12A. Manders13L. Palacios-Peña14M. Prank15M. Prank16L. Pozzoli17L. Pozzoli18R. Sokhi19E. Solazzo20P. Tuccella21P. Tuccella22A. Unal23M. G. Vivanco24C. Hogrefe25S. Galmarini26Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, ItalyCenter of Excellence in Telesening of Environment and Model Prediction of Severe Events (CETEMPS), University of L'Aquila, L'Aquila (AQ), ItalyEurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Istanbul, TurkeyDepartment of Physics, University of Murcia, Murcia, 30003, SpainEnviroware s.r.l., Concorezzo (MB), 20863, ItalyHelmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Geesthacht, 21502, GermanyAtmospheric Modelling Secton (ATMO), Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, DenmarkAtmospheric Modelling and Environmental Mapping Unit, INERIS, BP2, Verneuil-en-Halatte, 60550, FranceCentre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire College Lane, Hatfield, AL10 9AB, UKCentre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire College Lane, Hatfield, AL10 9AB, UKDepartment of Physics, University of Murcia, Murcia, 30003, SpainAtmospheric Modelling Secton (ATMO), Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, DenmarkNRC Research Associate at Computational Exposure Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, USATNO, PO Box 80015, 3508 TA Utrecht, the NetherlandsDepartment of Physics, University of Murcia, Murcia, 30003, SpainFinnish Meteorological Institute, Atmospheric Composition Research Unit, Helsinki, 00560, FinlandCornell University, Department of Earth and Atmospheric Sciences, Ithaca, 14853 NY, USAEurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Istanbul, TurkeyCornell University, Department of Earth and Atmospheric Sciences, Ithaca, 14853 NY, USACentre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire College Lane, Hatfield, AL10 9AB, UKJoint Research Centre (JRC), European Commission, Ispra (VA), 21027, ItalyDepartment of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, ItalyCenter of Excellence in Telesening of Environment and Model Prediction of Severe Events (CETEMPS), University of L'Aquila, L'Aquila (AQ), ItalyEurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Istanbul, TurkeyCIEMAT, Madrid, 28040, SpainComputational Exposure Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, USAJoint Research Centre (JRC), European Commission, Ispra (VA), 21027, Italy<p>An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of these effects. Here we compare aerosol optical properties simulations over Europe and North America, coordinated in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII), to 1 year of AERONET sunphotometer retrievals, in an attempt to identify a mixing state representation that better reproduces the observed single scattering albedo and its spectral variation. We use a single post-processing tool (FlexAOD) to derive aerosol optical properties from simulated aerosol speciation profiles, and focus on the absorption enhancement of black carbon when it is internally mixed with more scattering material, discarding from the analysis scenes dominated by dust.</p> <p>We found that the single scattering albedo at 440&thinsp;nm (<span class="inline-formula"><i>ω</i><sub>0,440</sub>)</span> is on average overestimated (underestimated) by 3–5&thinsp;% when external (core-shell internal) mixing of particles<span id="page182"/> is assumed, a bias comparable in magnitude with the typical variability of the quantity. The (unphysical) homogeneous internal mixing assumption underestimates <span class="inline-formula"><i>ω</i><sub>0,440</sub></span> by <span class="inline-formula">∼14</span>&thinsp;%. The combination of external and core-shell configurations (partial internal mixing), parameterized using a simplified function of air mass aging, reduces the <span class="inline-formula"><i>ω</i><sub>0,440</sub></span> bias to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1</mn><mo>/</mo><mo>-</mo><mn mathvariant="normal">3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="39pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ed67d70e5b0265304da1b69b819dd11d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-181-2019-ie00001.svg" width="39pt" height="14pt" src="acp-19-181-2019-ie00001.png"/></svg:svg></span></span>&thinsp;%. The black carbon absorption enhancement (<span class="inline-formula"><i>E</i><sub>abs</sub>)</span> in core-shell with respect to the externally mixed state is in the range 1.8–2.5, which is above the currently most accepted upper limit of <span class="inline-formula">∼1.5</span>. The partial internal mixing reduces <span class="inline-formula"><i>E</i><sub>abs</sub></span> to values more consistent with this limit. However, the spectral dependence of the absorption is not well reproduced, and the absorption Ångström exponent AAE<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">675</mn><mn mathvariant="normal">440</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="16pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="f40632cc1b94d2fa6ba42353b246d109"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-181-2019-ie00002.svg" width="16pt" height="17pt" src="acp-19-181-2019-ie00002.png"/></svg:svg></span></span> is overestimated by 70–120&thinsp;%. Further testing against more comprehensive campaign data, including a full characterization of the aerosol profile in terms of chemical speciation, mixing state, and related optical properties, would help in putting a better constraint on these calculations.</p>https://www.atmos-chem-phys.net/19/181/2019/acp-19-181-2019.pdf