Andrographolide as a therapeutic agent against breast and ovarian cancers

Andrographolide (ANDR), isolated from Andrographis paniculata, is a medicinal compound effective against infections, inflammatory disorders, and various cancers. In the present study, the effects of ANDR on NFkB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation, caspase-8-m...

Full description

Bibliographic Details
Main Authors: Beesetti Swarna Latha, Jayadev Mavuluri, Subhashini Gnana Veera, Mansour Lamjed, Alwasel Saleh, Harrath Abdel Halim
Format: Article
Language:English
Published: De Gruyter 2019-12-01
Series:Open Life Sciences
Subjects:
Online Access:https://doi.org/10.1515/biol-2019-0052
Description
Summary:Andrographolide (ANDR), isolated from Andrographis paniculata, is a medicinal compound effective against infections, inflammatory disorders, and various cancers. In the present study, the effects of ANDR on NFkB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation, caspase-8-mediated apoptosis and pyroptosis, and extra cellular matrix (ECM) degradation were analyzed in A431, MDA-MB231, and SKOV-3 cell lines. Results showed that ANDR inhibited the growth and proliferation of cancer cell lines by inhibiting NFkB signaling. A significant decrease in phospho-p65 level was observed upon increasing ANDR concentration in epidermoid carcinoma and breast cancer cell lines, A431 and MDA-MB231, respectively. Accordingly, upon ANDR treatment, the expression of caspase-8 was increased, whereas no significant induction of caspase-1 expression was observed. Moreover, we observed a significant increase in the expression of tissue inhibitor of metallopeptidase-1 (TIMP1) upon increasing ANDR concentration. Such induction of TIMP1 inhibited the activity of matrix metallopeptidase-7 (MMP-7), thus preventing the degradation of ECM. Therefore, as ANDR shows cytotoxicity towards cancer cells via the NFkB signal transduction pathway without inducing pyroptosis and blocks breast and ovarian cancer invasion by inhibiting MMP-7 expression through TIMP1 up-regulation, it has the potential to be developed as a drug targeting ovarian and breast cancers.
ISSN:2391-5412