MiR-21 nanocapsules promote early bone repair of osteoporotic fractures by stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells

Objective: The healing of osteoporotic fractures in the elderly patients is a difficult clinical problem. Currently, based on the internal fixation of fractures, the available drug treatments mainly focus on either inhibiting osteoclast function, such as bisphosphonate, calcitonin, oestrogen or prom...

Full description

Bibliographic Details
Main Authors: Xiaolei Sun, Xueping Li, Hongzhao Qi, Xin Hou, Jin Zhao, Xubo Yuan, Xinlong Ma
Format: Article
Language:English
Published: Elsevier 2020-09-01
Series:Journal of Orthopaedic Translation
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214031X20300632
id doaj-f43eb8704eac4aa993c36bc0abce8f4e
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Xiaolei Sun
Xueping Li
Hongzhao Qi
Xin Hou
Jin Zhao
Xubo Yuan
Xinlong Ma
spellingShingle Xiaolei Sun
Xueping Li
Hongzhao Qi
Xin Hou
Jin Zhao
Xubo Yuan
Xinlong Ma
MiR-21 nanocapsules promote early bone repair of osteoporotic fractures by stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells
Journal of Orthopaedic Translation
Bone repair
MicroRNA-21
Nanocapsules
Osteoporotic fractures
author_facet Xiaolei Sun
Xueping Li
Hongzhao Qi
Xin Hou
Jin Zhao
Xubo Yuan
Xinlong Ma
author_sort Xiaolei Sun
title MiR-21 nanocapsules promote early bone repair of osteoporotic fractures by stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells
title_short MiR-21 nanocapsules promote early bone repair of osteoporotic fractures by stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells
title_full MiR-21 nanocapsules promote early bone repair of osteoporotic fractures by stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells
title_fullStr MiR-21 nanocapsules promote early bone repair of osteoporotic fractures by stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells
title_full_unstemmed MiR-21 nanocapsules promote early bone repair of osteoporotic fractures by stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells
title_sort mir-21 nanocapsules promote early bone repair of osteoporotic fractures by stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells
publisher Elsevier
series Journal of Orthopaedic Translation
issn 2214-031X
publishDate 2020-09-01
description Objective: The healing of osteoporotic fractures in the elderly patients is a difficult clinical problem. Currently, based on the internal fixation of fractures, the available drug treatments mainly focus on either inhibiting osteoclast function, such as bisphosphonate, calcitonin, oestrogen or promoting osteogenesis, such as parathyroid hormones. However, the availability of current antiosteoporotic drugs in promoting osteoporotic fracture healing is limited. The objective of the present study was to investigate the ability of the MiR-21/nanocapsule to enhance the early bone repair of osteoporotic fractures. Methods: Based on the presence of matrix metalloproteinases that are overexpressed at the fracture site, we designed the matrix metalloproteinase–sensitive nanocapsules which were formed by in situ free radical polymerisation on the surface of MiR-21 with 2-(methacryloyloxy) ethyl phosphorylcholine and the bisacryloylated VPLGVRTK peptide. The MiR-21/nanocapsule [n (miR-21)] and O-carboxymethyl chitosan (CMCS) were mixed until they formed a gel-like material [CMCS/n (miR-21)] with good fluidity and injectability. Thirty elderly Sprague Dawley (SD) rats (female, 14-month-old, 380 ± 10 g) were subjected to bilateral removal of the ovaries (ovariectomised). All rats were subjected to bilateral bone defects (2 mm diameter) of the proximal tibia and randomly divided into three groups (groups A, B, and C): separately injected with CMCS/n (miR-21), CMCS/n (NC-miR), and saline. Micro-computed tomography (CT) imaging was performed to evaluate newly formed bone volume and connectivity. Nondecalcified histology and toluidine blue staining were performed to measure the effects of CMCS/n (miR-21) on bone repair. In vitro, the effect of n (miR-21) on osteogenic differentiation to bone marrow mesenchymal stem cells (BMSCs) which derived from the ovariectomised rat model was observed. Results: The morphology of n (miR-21) was a regular spherical nanocapsule with a uniform small size (25–35 nm). The results confirmed that n (miR-21) could be efficiently phagocytosed by BMSCs and released in the cytoplasm to promote osteogenesis. The expression level of alkaline phosphatase and Runt-related transcription factor 2 mRNA in the n (miR-21) group was higher than that in the n (NC-miR) group. Animal experiments proved that CMCS/n (miR-21) produced better bone repair compared with the CMCS/n (NC-miR) group in the early stages of fracture healing at 4 weeks. In the late stage of fracture healing (8 weeks), micro-CT quantitative analysis showed that the new bone trabeculae in the CMCS/n (miR-21) group has decreased compared with the CMCS/n (NC-miR) group. In the CMCS/n (miR-21) group, the new cancellous bone had been absorbed, and the process of bone healing was almost completed. In contrast, the new bone in the CMCS/n (NC-miR) and the control groups was still in the healing process. Conclusion: The cytological tests confirmed that n (miR-21) can promote osteogenic differentiation of BMSCs derived from the osteoporosis rat model. Furthermore, the results of animal tests demonstrated that local injection of CMCS/n (miR-21) promoted the early healing of osteoporotic bone defects. Consequently CMCS/n (miR-21) promoted the bone repair process to enter the moulding phase earlier. The translational potential of this article: CMCS/n (miR-21) can be widely applied to elderly patients with osteoporotic fractures. This method can help patients with osteoporotic fractures recover earlier and avoid serious complications. It provides a potential approach for the clinical treatment of osteoporotic fractures in the elderly.
topic Bone repair
MicroRNA-21
Nanocapsules
Osteoporotic fractures
url http://www.sciencedirect.com/science/article/pii/S2214031X20300632
work_keys_str_mv AT xiaoleisun mir21nanocapsulespromoteearlybonerepairofosteoporoticfracturesbystimulatingtheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT xuepingli mir21nanocapsulespromoteearlybonerepairofosteoporoticfracturesbystimulatingtheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT hongzhaoqi mir21nanocapsulespromoteearlybonerepairofosteoporoticfracturesbystimulatingtheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT xinhou mir21nanocapsulespromoteearlybonerepairofosteoporoticfracturesbystimulatingtheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT jinzhao mir21nanocapsulespromoteearlybonerepairofosteoporoticfracturesbystimulatingtheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT xuboyuan mir21nanocapsulespromoteearlybonerepairofosteoporoticfracturesbystimulatingtheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT xinlongma mir21nanocapsulespromoteearlybonerepairofosteoporoticfracturesbystimulatingtheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
_version_ 1724465596798599168
spelling doaj-f43eb8704eac4aa993c36bc0abce8f4e2020-11-25T03:56:20ZengElsevierJournal of Orthopaedic Translation2214-031X2020-09-01247687MiR-21 nanocapsules promote early bone repair of osteoporotic fractures by stimulating the osteogenic differentiation of bone marrow mesenchymal stem cellsXiaolei Sun0Xueping Li1Hongzhao Qi2Xin Hou3Jin Zhao4Xubo Yuan5Xinlong Ma6Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China; Department of Orthopaedics, Tianjin Hospital, Tianjin, 300211, ChinaTianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, ChinaInstitute for Translational Medicine, Qingdao University, Qingdao, 266021, ChinaTianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, ChinaTianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China; Corresponding author.Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China; Corresponding author.Department of Orthopaedics, Tianjin Hospital, Tianjin, 300211, ChinaObjective: The healing of osteoporotic fractures in the elderly patients is a difficult clinical problem. Currently, based on the internal fixation of fractures, the available drug treatments mainly focus on either inhibiting osteoclast function, such as bisphosphonate, calcitonin, oestrogen or promoting osteogenesis, such as parathyroid hormones. However, the availability of current antiosteoporotic drugs in promoting osteoporotic fracture healing is limited. The objective of the present study was to investigate the ability of the MiR-21/nanocapsule to enhance the early bone repair of osteoporotic fractures. Methods: Based on the presence of matrix metalloproteinases that are overexpressed at the fracture site, we designed the matrix metalloproteinase–sensitive nanocapsules which were formed by in situ free radical polymerisation on the surface of MiR-21 with 2-(methacryloyloxy) ethyl phosphorylcholine and the bisacryloylated VPLGVRTK peptide. The MiR-21/nanocapsule [n (miR-21)] and O-carboxymethyl chitosan (CMCS) were mixed until they formed a gel-like material [CMCS/n (miR-21)] with good fluidity and injectability. Thirty elderly Sprague Dawley (SD) rats (female, 14-month-old, 380 ± 10 g) were subjected to bilateral removal of the ovaries (ovariectomised). All rats were subjected to bilateral bone defects (2 mm diameter) of the proximal tibia and randomly divided into three groups (groups A, B, and C): separately injected with CMCS/n (miR-21), CMCS/n (NC-miR), and saline. Micro-computed tomography (CT) imaging was performed to evaluate newly formed bone volume and connectivity. Nondecalcified histology and toluidine blue staining were performed to measure the effects of CMCS/n (miR-21) on bone repair. In vitro, the effect of n (miR-21) on osteogenic differentiation to bone marrow mesenchymal stem cells (BMSCs) which derived from the ovariectomised rat model was observed. Results: The morphology of n (miR-21) was a regular spherical nanocapsule with a uniform small size (25–35 nm). The results confirmed that n (miR-21) could be efficiently phagocytosed by BMSCs and released in the cytoplasm to promote osteogenesis. The expression level of alkaline phosphatase and Runt-related transcription factor 2 mRNA in the n (miR-21) group was higher than that in the n (NC-miR) group. Animal experiments proved that CMCS/n (miR-21) produced better bone repair compared with the CMCS/n (NC-miR) group in the early stages of fracture healing at 4 weeks. In the late stage of fracture healing (8 weeks), micro-CT quantitative analysis showed that the new bone trabeculae in the CMCS/n (miR-21) group has decreased compared with the CMCS/n (NC-miR) group. In the CMCS/n (miR-21) group, the new cancellous bone had been absorbed, and the process of bone healing was almost completed. In contrast, the new bone in the CMCS/n (NC-miR) and the control groups was still in the healing process. Conclusion: The cytological tests confirmed that n (miR-21) can promote osteogenic differentiation of BMSCs derived from the osteoporosis rat model. Furthermore, the results of animal tests demonstrated that local injection of CMCS/n (miR-21) promoted the early healing of osteoporotic bone defects. Consequently CMCS/n (miR-21) promoted the bone repair process to enter the moulding phase earlier. The translational potential of this article: CMCS/n (miR-21) can be widely applied to elderly patients with osteoporotic fractures. This method can help patients with osteoporotic fractures recover earlier and avoid serious complications. It provides a potential approach for the clinical treatment of osteoporotic fractures in the elderly.http://www.sciencedirect.com/science/article/pii/S2214031X20300632Bone repairMicroRNA-21NanocapsulesOsteoporotic fractures