Feasibility Study of Selective Laser Melting for Metal Matrix Diamond Tools

Metal matrix diamond composite samples were fabricated by selective laser melting (SLM) at different forming parameters to investigate the feasibility and new challenges when SLM is applied to diamond tools manufacturing. The surface topographies, Rockwell hardness, compactness, microstructure, and...

Full description

Bibliographic Details
Main Authors: Xiaohong Fang, Zhan Yang, Songcheng Tan, Longchen Duan
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/10/7/596
Description
Summary:Metal matrix diamond composite samples were fabricated by selective laser melting (SLM) at different forming parameters to investigate the feasibility and new challenges when SLM is applied to diamond tools manufacturing. The surface topographies, Rockwell hardness, compactness, microstructure, and diamond thermal damage of the samples were investigated in this study. The fabricated samples had high porosity and relatively low Rockwell hardness and compactness, and some ridge-shaped bulges and textures were observed at the edges and surfaces. Microstructure analyses showed that diamond particles were homogeneously distributed and metallurgically bonded within the metal matrix. The thermal damage pits on the diamond crystals along the scanning direction were the dominant damage type for SLM, which was completely different from conventional vacuum brazing and hot-pressing sintering. Although some challenges need to be further studied, our results demonstrate that SLM has great potential to propel the development of metal matrix diamond tools.
ISSN:2073-4352