Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type

The invariants of finite-dimensional representations of simple Lie algebras, such as even-degree indices and anomaly numbers, are considered in the context of the non-crystallographic finite reflection groups <inline-formula><math display="inline"><semantics><msub>&...

Full description

Bibliographic Details
Main Authors: Mariia Myronova, Jiří Patera, Marzena Szajewska
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/10/1737
id doaj-f3f4b1a7ccb24d2998b38cdf085b80c2
record_format Article
spelling doaj-f3f4b1a7ccb24d2998b38cdf085b80c22020-11-25T03:03:53ZengMDPI AGSymmetry2073-89942020-10-01121737173710.3390/sym12101737Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic TypeMariia Myronova0Jiří Patera1Marzena Szajewska2Département de Physique, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaCentre de Recherches Mathématique, Université de Montréal, C. P. 6128 Centre-Ville, Montréal, QC H3C 3J7, CanadaDepartment of Mathematics, University of Białystok, 1M Ciołkowskiego, PL-15-245 Białystok, PolandThe invariants of finite-dimensional representations of simple Lie algebras, such as even-degree indices and anomaly numbers, are considered in the context of the non-crystallographic finite reflection groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>4</mn></msub></semantics></math></inline-formula>. Using a representation-orbit replacement, the definitions and properties of the indices are formulated for individual orbits of the examined groups. The indices of orders two and four of the tensor product of <i>k</i> orbits are determined. Using the branching rules for the non-crystallographic Coxeter groups, the embedding index is defined similarly to the Dynkin index of a representation. Moreover, since the definition of the indices can be applied to any orbit of non-crystallographic type, the algorithm allowing to search for the orbits of smaller radii contained within any considered one is presented for the Coxeter groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula>. The geometrical structures of nested polytopes are exemplified.https://www.mdpi.com/2073-8994/12/10/1737Coxeter groupnested polytopeorbit indexhigher-order indexanomaly numberweight multiplicity
collection DOAJ
language English
format Article
sources DOAJ
author Mariia Myronova
Jiří Patera
Marzena Szajewska
spellingShingle Mariia Myronova
Jiří Patera
Marzena Szajewska
Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
Symmetry
Coxeter group
nested polytope
orbit index
higher-order index
anomaly number
weight multiplicity
author_facet Mariia Myronova
Jiří Patera
Marzena Szajewska
author_sort Mariia Myronova
title Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
title_short Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
title_full Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
title_fullStr Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
title_full_unstemmed Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
title_sort nested polyhedra and indices of orbits of coxeter groups of non-crystallographic type
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-10-01
description The invariants of finite-dimensional representations of simple Lie algebras, such as even-degree indices and anomaly numbers, are considered in the context of the non-crystallographic finite reflection groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>4</mn></msub></semantics></math></inline-formula>. Using a representation-orbit replacement, the definitions and properties of the indices are formulated for individual orbits of the examined groups. The indices of orders two and four of the tensor product of <i>k</i> orbits are determined. Using the branching rules for the non-crystallographic Coxeter groups, the embedding index is defined similarly to the Dynkin index of a representation. Moreover, since the definition of the indices can be applied to any orbit of non-crystallographic type, the algorithm allowing to search for the orbits of smaller radii contained within any considered one is presented for the Coxeter groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula>. The geometrical structures of nested polytopes are exemplified.
topic Coxeter group
nested polytope
orbit index
higher-order index
anomaly number
weight multiplicity
url https://www.mdpi.com/2073-8994/12/10/1737
work_keys_str_mv AT mariiamyronova nestedpolyhedraandindicesoforbitsofcoxetergroupsofnoncrystallographictype
AT jiripatera nestedpolyhedraandindicesoforbitsofcoxetergroupsofnoncrystallographictype
AT marzenaszajewska nestedpolyhedraandindicesoforbitsofcoxetergroupsofnoncrystallographictype
_version_ 1724684039260995584