Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
The invariants of finite-dimensional representations of simple Lie algebras, such as even-degree indices and anomaly numbers, are considered in the context of the non-crystallographic finite reflection groups <inline-formula><math display="inline"><semantics><msub>&...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/10/1737 |
id |
doaj-f3f4b1a7ccb24d2998b38cdf085b80c2 |
---|---|
record_format |
Article |
spelling |
doaj-f3f4b1a7ccb24d2998b38cdf085b80c22020-11-25T03:03:53ZengMDPI AGSymmetry2073-89942020-10-01121737173710.3390/sym12101737Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic TypeMariia Myronova0Jiří Patera1Marzena Szajewska2Département de Physique, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaCentre de Recherches Mathématique, Université de Montréal, C. P. 6128 Centre-Ville, Montréal, QC H3C 3J7, CanadaDepartment of Mathematics, University of Białystok, 1M Ciołkowskiego, PL-15-245 Białystok, PolandThe invariants of finite-dimensional representations of simple Lie algebras, such as even-degree indices and anomaly numbers, are considered in the context of the non-crystallographic finite reflection groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>4</mn></msub></semantics></math></inline-formula>. Using a representation-orbit replacement, the definitions and properties of the indices are formulated for individual orbits of the examined groups. The indices of orders two and four of the tensor product of <i>k</i> orbits are determined. Using the branching rules for the non-crystallographic Coxeter groups, the embedding index is defined similarly to the Dynkin index of a representation. Moreover, since the definition of the indices can be applied to any orbit of non-crystallographic type, the algorithm allowing to search for the orbits of smaller radii contained within any considered one is presented for the Coxeter groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula>. The geometrical structures of nested polytopes are exemplified.https://www.mdpi.com/2073-8994/12/10/1737Coxeter groupnested polytopeorbit indexhigher-order indexanomaly numberweight multiplicity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mariia Myronova Jiří Patera Marzena Szajewska |
spellingShingle |
Mariia Myronova Jiří Patera Marzena Szajewska Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type Symmetry Coxeter group nested polytope orbit index higher-order index anomaly number weight multiplicity |
author_facet |
Mariia Myronova Jiří Patera Marzena Szajewska |
author_sort |
Mariia Myronova |
title |
Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type |
title_short |
Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type |
title_full |
Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type |
title_fullStr |
Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type |
title_full_unstemmed |
Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type |
title_sort |
nested polyhedra and indices of orbits of coxeter groups of non-crystallographic type |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-10-01 |
description |
The invariants of finite-dimensional representations of simple Lie algebras, such as even-degree indices and anomaly numbers, are considered in the context of the non-crystallographic finite reflection groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>4</mn></msub></semantics></math></inline-formula>. Using a representation-orbit replacement, the definitions and properties of the indices are formulated for individual orbits of the examined groups. The indices of orders two and four of the tensor product of <i>k</i> orbits are determined. Using the branching rules for the non-crystallographic Coxeter groups, the embedding index is defined similarly to the Dynkin index of a representation. Moreover, since the definition of the indices can be applied to any orbit of non-crystallographic type, the algorithm allowing to search for the orbits of smaller radii contained within any considered one is presented for the Coxeter groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula>. The geometrical structures of nested polytopes are exemplified. |
topic |
Coxeter group nested polytope orbit index higher-order index anomaly number weight multiplicity |
url |
https://www.mdpi.com/2073-8994/12/10/1737 |
work_keys_str_mv |
AT mariiamyronova nestedpolyhedraandindicesoforbitsofcoxetergroupsofnoncrystallographictype AT jiripatera nestedpolyhedraandindicesoforbitsofcoxetergroupsofnoncrystallographictype AT marzenaszajewska nestedpolyhedraandindicesoforbitsofcoxetergroupsofnoncrystallographictype |
_version_ |
1724684039260995584 |