Grain-to-Grain Interaction Effect in Polycrystalline Plain Low-Carbon Steel within Elastic Deformation Region

A grain is surrounded by grains with different crystal orientations in polycrystalline plain low-carbon steel. The grain is constrained by its adjacent grains in the tension process. The interaction of the grain with the adjacent grains was investigated within the elastic deformation region. The fol...

Full description

Bibliographic Details
Main Authors: Hai Qiu, Rintaro Ueji, Yuuji Kimura, Tadanobu Inoue
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/8/1865
Description
Summary:A grain is surrounded by grains with different crystal orientations in polycrystalline plain low-carbon steel. The grain is constrained by its adjacent grains in the tension process. The interaction of the grain with the adjacent grains was investigated within the elastic deformation region. The following results have been obtained: (1) the Young’s modulus of a grain without consideration of grain-to-grain interaction is denoted as the inherent Young’s modulus; when the inherent Young’s modulus of a grain is equal to the Young’s modulus of the bulk material, there is almost no interaction between the grain and its adjacent grains; when a grain has a great difference between its inherent Young’s modulus and the Young’s modulus of the bulk material, its grain-to-grain interactions increase significantly; (2) the grain-to-grain interaction is mainly caused by the difference in the inherent Young’s modulus between the grain and its adjacent grains; the misorientation angle between the grain and its adjacent grains has almost no effect on the grain-to-grain interaction.
ISSN:1996-1944