Comparative study of mesenchymal stem cells from C57BL/10 and mdx mice

<p>Abstract</p> <p>Background</p> <p>Human mesenchymal stem cells (MSCs) have been studied and applied extensively because of their ability to self-renew and differentiate into various cell types. Since most human diseases models are murine, mouse MSCs should have been...

Full description

Bibliographic Details
Main Authors: Xu Yong-feng, Zhao Cui-ping, Shang Yan-chang, Peng Fu-lin, Yu Mei-juan, Xiong Fu, Zhang Cheng, Li Yong, Liu Zheng-shan, Zhou Chang, Wu Jin-lang
Format: Article
Language:English
Published: BMC 2008-05-01
Series:BMC Cell Biology
Online Access:http://www.biomedcentral.com/1471-2121/9/24
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Human mesenchymal stem cells (MSCs) have been studied and applied extensively because of their ability to self-renew and differentiate into various cell types. Since most human diseases models are murine, mouse MSCs should have been studied in detail. The mdx mouse – a Duchenne muscular dystrophy model – was produced by introducing a point mutation in the dystrophin gene. To understand the role of dystrophin in MSCs, we compared MSCs from mdx and C57BL/10 mice, focusing particularly on the aspects of light and electron microscopic morphology, immunophenotyping, and differentiation potential.</p> <p>Results</p> <p>Our study showed that at passage 10, mdx-MSCs exhibited increased heterochromatin, larger vacuoles, and more lysosomes under electron microscopy compared to C57BL/10-MSCs. C57BL/10-MSCs formed a few myotubes, while mdx-MSCs did not at the same passages. By passage 21, mdx-MSCs but not C57BL/10-MSCs had gradually lost their proliferative ability. In addition, a significant difference in the expression of CD34, not Sca-1 and CD11b, was observed between the MSCs from the 2 mice.</p> <p>Conclusion</p> <p>Our current study reveals that the MSCs from the 2 mice, namely, C57BL/10 and mdx, exhibit differences in proliferative and myogenic abilities. The results suggest that the changes in mouse MSC behavior may be influenced by lack of dystrophin protein in mdx mouse.</p>
ISSN:1471-2121