Fatou type weighted pointwise convergence of nonlinear singular integral operators Depending on two parameters

In this paper we present some theorems concerning existence and Fatou type weighted pointwise convergence of nonlinear singular integral operators of the form: (Tλf)(x)=∫RKλ(t−x; f(t))dt, x∈R, λ∈Λ$({T_\lambda }f)(x) = \int\limits_R {{K_\lambda }} (t - x;{\rm{ }}f(t))dt,{\rm{ x}} \in R,{\rm{ }}\lamb...

Full description

Bibliographic Details
Main Authors: Uysal Gumrah, Serenbay Sevilay Kirci
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20166816002
Description
Summary:In this paper we present some theorems concerning existence and Fatou type weighted pointwise convergence of nonlinear singular integral operators of the form: (Tλf)(x)=∫RKλ(t−x; f(t))dt, x∈R, λ∈Λ$({T_\lambda }f)(x) = \int\limits_R {{K_\lambda }} (t - x;{\rm{ }}f(t))dt,{\rm{ x}} \in R,{\rm{ }}\lambda \in \Lambda $ where Λ ≠ ∅ is a set of non-negative indices, at a common generalized Lebesgue point of the functions f ∈ L1,ϕ (R) and positive weight function φ. Here, L1,ϕ (R) is the space of all measurable functions for which |fϕ|$\left| {{f \over \phi }} \right|$ is integrable on R.
ISSN:2261-236X