Characterization and Analysis of Energy Demand Patterns in Airports

Airports in general have high-energy consumption. Influenced by many factors, the characteristics of airport energy consumption are stochastic, nonlinear and dynamic. In recent years, airport managers have made huge efforts to harmonize airport operation with environmental sustainability by minimizi...

Full description

Bibliographic Details
Main Authors: Sergio Ortega Alba, Mario Manana
Format: Article
Language:English
Published: MDPI AG 2017-01-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/10/1/119
Description
Summary:Airports in general have high-energy consumption. Influenced by many factors, the characteristics of airport energy consumption are stochastic, nonlinear and dynamic. In recent years, airport managers have made huge efforts to harmonize airport operation with environmental sustainability by minimizing the environmental impact, with energy conservation and energy efficiency as one of their pillars. A key factor in order to reduce energy consumption at airports is to understand the energy use and consumption behavior, due to the multiple parameters and singularities that are involved. In this article, a 3-step methodology based on monitoring methods is proposed to characterize and analyze energy demand patterns in airports through their electric load profiles, and is applied to the Seve Ballesteros-Santander Airport (Santander, Spain). This methodology can be also used in airports in order to determine the way energy is used, to establish the classification of the electrical charges based on their operation way as well as to determine the main energy consumers and main external influencers. Results show that airport present a daily energy demand pattern since electric load profiles follow a similar curve shape for every day of the year, having a great dependence of the terminal building behavior, the main energy consumer of the airport, and with heating, ventilation and air conditioning (HVAC) and lighting being the most energy-intensive facilities, and outside temperature and daylighting the main external influencers.
ISSN:1996-1073