Experimental investigation on shear fracture at high strain rates

Adiabatic shear banding is a well-understood failure mechanism of metals at high strain rates. In addition, recent research on the ductile fracture of metals has demonstrated that shear localization at the microscale is also an important precursor of fracture initiation at low strain rates. This tal...

Full description

Bibliographic Details
Main Authors: Roth Christian C., Mohr Dirk
Format: Article
Language:English
Published: EDP Sciences 2015-01-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20159401078
Description
Summary:Adiabatic shear banding is a well-understood failure mechanism of metals at high strain rates. In addition, recent research on the ductile fracture of metals has demonstrated that shear localization at the microscale is also an important precursor of fracture initiation at low strain rates. This talk presents a new shear fracture specimen which is used to conduct fracture experiments on advanced high strength steel sheets at strain rates of up to 1/s in a hydraulic testing machine and for strain rates of up to 2500/s in a Split Hopkinson Bar system. The experimental result for a 22 MnB5 steel show a significant increase in ductility as a function of strain rate. Results from scanning electron microscopy are also shown to provide insight into the effect of the strain rate on the shear localization at the microscale.
ISSN:2100-014X