Experimental investigation on shear fracture at high strain rates
Adiabatic shear banding is a well-understood failure mechanism of metals at high strain rates. In addition, recent research on the ductile fracture of metals has demonstrated that shear localization at the microscale is also an important precursor of fracture initiation at low strain rates. This tal...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2015-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/epjconf/20159401078 |
Summary: | Adiabatic shear banding is a well-understood failure mechanism of metals at high strain rates. In addition, recent research on the ductile fracture of metals has demonstrated that shear localization at the microscale is also an important precursor of fracture initiation at low strain rates. This talk presents a new shear fracture specimen which is used to conduct fracture experiments on advanced high strength steel sheets at strain rates of up to 1/s in a hydraulic testing machine and for strain rates of up to 2500/s in a Split Hopkinson Bar system. The experimental result for a 22 MnB5 steel show a significant increase in ductility as a function of strain rate. Results from scanning electron microscopy are also shown to provide insight into the effect of the strain rate on the shear localization at the microscale. |
---|---|
ISSN: | 2100-014X |