Comparison of partial orders clustering techniques
In this paper, we compare three approaches of clustering partial ordered subsets of a set of items. First approach was k-medoids clustering algorithm with distance function based on Levenshtein distance. The second approach was k-means algorithm with cosine distance as distance function after vector...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Ivannikov Institute for System Programming of the Russian Academy of Sciences
2018-10-01
|
Series: | Труды Института системного программирования РАН |
Subjects: | |
Online Access: | https://ispranproceedings.elpub.ru/jour/article/view/829 |
id |
doaj-f3b5a70d3c344bb488302682380df929 |
---|---|
record_format |
Article |
spelling |
doaj-f3b5a70d3c344bb488302682380df9292020-11-25T02:16:36Zeng Ivannikov Institute for System Programming of the Russian Academy of SciencesТруды Института системного программирования РАН2079-81562220-64262018-10-01264919810.15514/ISPRAS-2014-26(4)-7829Comparison of partial orders clustering techniquesA. Raskin0Национальный исследовательский ядерный университет «МИФИ»In this paper, we compare three approaches of clustering partial ordered subsets of a set of items. First approach was k-medoids clustering algorithm with distance function based on Levenshtein distance. The second approach was k-means algorithm with cosine distance as distance function after vectorization of partial orders. And the third one was k-medoids algorithm with Kendall's tau as a distance function. We use Adjusted Rand Index as a measure of quality of clustering and find out that clustering with all three methods get stable results when variance of number of items ranked is high. Vectorization of partial orders get best results if number of items ranked is low.https://ispranproceedings.elpub.ru/jour/article/view/829расстояние левенштейначастично упорядоченные множествакластеризациямеры близостикоэффициент корреляции кендалла |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Raskin |
spellingShingle |
A. Raskin Comparison of partial orders clustering techniques Труды Института системного программирования РАН расстояние левенштейна частично упорядоченные множества кластеризация меры близости коэффициент корреляции кендалла |
author_facet |
A. Raskin |
author_sort |
A. Raskin |
title |
Comparison of partial orders clustering techniques |
title_short |
Comparison of partial orders clustering techniques |
title_full |
Comparison of partial orders clustering techniques |
title_fullStr |
Comparison of partial orders clustering techniques |
title_full_unstemmed |
Comparison of partial orders clustering techniques |
title_sort |
comparison of partial orders clustering techniques |
publisher |
Ivannikov Institute for System Programming of the Russian Academy of Sciences |
series |
Труды Института системного программирования РАН |
issn |
2079-8156 2220-6426 |
publishDate |
2018-10-01 |
description |
In this paper, we compare three approaches of clustering partial ordered subsets of a set of items. First approach was k-medoids clustering algorithm with distance function based on Levenshtein distance. The second approach was k-means algorithm with cosine distance as distance function after vectorization of partial orders. And the third one was k-medoids algorithm with Kendall's tau as a distance function. We use Adjusted Rand Index as a measure of quality of clustering and find out that clustering with all three methods get stable results when variance of number of items ranked is high. Vectorization of partial orders get best results if number of items ranked is low. |
topic |
расстояние левенштейна частично упорядоченные множества кластеризация меры близости коэффициент корреляции кендалла |
url |
https://ispranproceedings.elpub.ru/jour/article/view/829 |
work_keys_str_mv |
AT araskin comparisonofpartialordersclusteringtechniques |
_version_ |
1724890213083250688 |