Comparison of partial orders clustering techniques

In this paper, we compare three approaches of clustering partial ordered subsets of a set of items. First approach was k-medoids clustering algorithm with distance function based on Levenshtein distance. The second approach was k-means algorithm with cosine distance as distance function after vector...

Full description

Bibliographic Details
Main Author: A. Raskin
Format: Article
Language:English
Published: Ivannikov Institute for System Programming of the Russian Academy of Sciences 2018-10-01
Series:Труды Института системного программирования РАН
Subjects:
Online Access:https://ispranproceedings.elpub.ru/jour/article/view/829
id doaj-f3b5a70d3c344bb488302682380df929
record_format Article
spelling doaj-f3b5a70d3c344bb488302682380df9292020-11-25T02:16:36Zeng Ivannikov Institute for System Programming of the Russian Academy of SciencesТруды Института системного программирования РАН2079-81562220-64262018-10-01264919810.15514/ISPRAS-2014-26(4)-7829Comparison of partial orders clustering techniquesA. Raskin0Национальный исследовательский ядерный университет «МИФИ»In this paper, we compare three approaches of clustering partial ordered subsets of a set of items. First approach was k-medoids clustering algorithm with distance function based on Levenshtein distance. The second approach was k-means algorithm with cosine distance as distance function after vectorization of partial orders. And the third one was k-medoids algorithm with Kendall's tau as a distance function. We use Adjusted Rand Index as a measure of quality of clustering and find out that clustering with all three methods get stable results when variance of number of items ranked is high. Vectorization of partial orders get best results if number of items ranked is low.https://ispranproceedings.elpub.ru/jour/article/view/829расстояние левенштейначастично упорядоченные множествакластеризациямеры близостикоэффициент корреляции кендалла
collection DOAJ
language English
format Article
sources DOAJ
author A. Raskin
spellingShingle A. Raskin
Comparison of partial orders clustering techniques
Труды Института системного программирования РАН
расстояние левенштейна
частично упорядоченные множества
кластеризация
меры близости
коэффициент корреляции кендалла
author_facet A. Raskin
author_sort A. Raskin
title Comparison of partial orders clustering techniques
title_short Comparison of partial orders clustering techniques
title_full Comparison of partial orders clustering techniques
title_fullStr Comparison of partial orders clustering techniques
title_full_unstemmed Comparison of partial orders clustering techniques
title_sort comparison of partial orders clustering techniques
publisher Ivannikov Institute for System Programming of the Russian Academy of Sciences
series Труды Института системного программирования РАН
issn 2079-8156
2220-6426
publishDate 2018-10-01
description In this paper, we compare three approaches of clustering partial ordered subsets of a set of items. First approach was k-medoids clustering algorithm with distance function based on Levenshtein distance. The second approach was k-means algorithm with cosine distance as distance function after vectorization of partial orders. And the third one was k-medoids algorithm with Kendall's tau as a distance function. We use Adjusted Rand Index as a measure of quality of clustering and find out that clustering with all three methods get stable results when variance of number of items ranked is high. Vectorization of partial orders get best results if number of items ranked is low.
topic расстояние левенштейна
частично упорядоченные множества
кластеризация
меры близости
коэффициент корреляции кендалла
url https://ispranproceedings.elpub.ru/jour/article/view/829
work_keys_str_mv AT araskin comparisonofpartialordersclusteringtechniques
_version_ 1724890213083250688