Carbon dioxide (CO<sub>2</sub>) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia

<p>The Belo Monte hydropower complex located in the Xingu River is the largest run-of-the-river (ROR) hydroelectric system in the world and has one of the highest energy production capacities among dams. Its construction received significant media attention due to its potential social and envi...

Full description

Bibliographic Details
Main Authors: K. R. de Araújo, H. O. Sawakuchi, D. J. Bertassoli Jr., A. O. Sawakuchi, K. D. da Silva, T. B. Vieira, N. D. Ward, T. S. Pereira
Format: Article
Language:English
Published: Copernicus Publications 2019-09-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/16/3527/2019/bg-16-3527-2019.pdf
id doaj-f3a208d10f8e46e299ba22d5908c71dc
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author K. R. de Araújo
H. O. Sawakuchi
H. O. Sawakuchi
H. O. Sawakuchi
D. J. Bertassoli Jr.
A. O. Sawakuchi
A. O. Sawakuchi
K. D. da Silva
K. D. da Silva
T. B. Vieira
T. B. Vieira
N. D. Ward
N. D. Ward
T. S. Pereira
T. S. Pereira
spellingShingle K. R. de Araújo
H. O. Sawakuchi
H. O. Sawakuchi
H. O. Sawakuchi
D. J. Bertassoli Jr.
A. O. Sawakuchi
A. O. Sawakuchi
K. D. da Silva
K. D. da Silva
T. B. Vieira
T. B. Vieira
N. D. Ward
N. D. Ward
T. S. Pereira
T. S. Pereira
Carbon dioxide (CO<sub>2</sub>) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia
Biogeosciences
author_facet K. R. de Araújo
H. O. Sawakuchi
H. O. Sawakuchi
H. O. Sawakuchi
D. J. Bertassoli Jr.
A. O. Sawakuchi
A. O. Sawakuchi
K. D. da Silva
K. D. da Silva
T. B. Vieira
T. B. Vieira
N. D. Ward
N. D. Ward
T. S. Pereira
T. S. Pereira
author_sort K. R. de Araújo
title Carbon dioxide (CO<sub>2</sub>) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia
title_short Carbon dioxide (CO<sub>2</sub>) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia
title_full Carbon dioxide (CO<sub>2</sub>) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia
title_fullStr Carbon dioxide (CO<sub>2</sub>) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia
title_full_unstemmed Carbon dioxide (CO<sub>2</sub>) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia
title_sort carbon dioxide (co<sub>2</sub>) concentrations and emission in the newly constructed belo monte hydropower complex in the xingu river, amazonia
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2019-09-01
description <p>The Belo Monte hydropower complex located in the Xingu River is the largest run-of-the-river (ROR) hydroelectric system in the world and has one of the highest energy production capacities among dams. Its construction received significant media attention due to its potential social and environmental impacts. It is composed of two ROR reservoirs: the Xingu Reservoir (XR) in the Xingu's main branch and the Intermediate Reservoir (IR), an artificial reservoir fed by waters diverted from the Xingu River with longer water residence time compared to XR. We aimed to evaluate spatiotemporal variations in <span class="inline-formula">CO<sub>2</sub></span> partial pressure (<span class="inline-formula"><i>p</i>CO<sub>2</sub></span>) and <span class="inline-formula">CO<sub>2</sub></span> fluxes (<span class="inline-formula"><i>F</i>CO<sub>2</sub></span>) during the first 2 years after the Xingu River impoundment under the hypothesis that each reservoir has contrasting <span class="inline-formula"><i>F</i>CO<sub>2</sub></span> and <span class="inline-formula"><i>p</i>CO<sub>2</sub></span> as vegetation clearing reduces flooded area emissions. Time of the year had a significant influence on <span class="inline-formula"><i>p</i>CO<sub>2</sub></span> with the highest average values observed during the high-water season. Spatial heterogeneity throughout the entire study area was observed for <span class="inline-formula"><i>p</i>CO<sub>2</sub></span> during both low- and high-water seasons. <span class="inline-formula"><i>F</i>CO<sub>2</sub></span>, on the other hand, only showed significant spatial heterogeneity during the high-water period. <span class="inline-formula"><i>F</i>CO<sub>2</sub></span> (<span class="inline-formula">0.90±0.47</span> and <span class="inline-formula">1.08±0.62</span>&thinsp;<span class="inline-formula">µ</span>mol&thinsp;m<span class="inline-formula"><sup>2</sup></span>&thinsp;d<span class="inline-formula"><sup>−1</sup></span> for XR and IR, respectively) and <span class="inline-formula"><i>p</i>CO<sub>2</sub></span> (<span class="inline-formula">1647±698</span> and <span class="inline-formula">1676±323</span>&thinsp;<span class="inline-formula">µ</span>atm for XR and IR, respectively) measured during the high-water season were on the same order of magnitude as previous observations in other Amazonian clearwater rivers unaffected by impoundment during the same season. In contrast, during the low-water season <span class="inline-formula"><i>F</i>CO<sub>2</sub></span> (<span class="inline-formula">0.69±0.28</span> and <span class="inline-formula">7.32±4.07</span>&thinsp;<span class="inline-formula">µ</span>mol&thinsp;m<span class="inline-formula"><sup>2</sup></span>&thinsp;d<span class="inline-formula"><sup>−1</sup></span> for XR and IR, respectively) and <span class="inline-formula"><i>p</i>CO<sub>2</sub></span> (<span class="inline-formula">839±646</span> and <span class="inline-formula">1797±354</span>&thinsp;<span class="inline-formula">µ</span>atm for XR and IR, respectively) in IR were an order of magnitude higher than literature <span class="inline-formula"><i>F</i>CO<sub>2</sub></span> observations in clearwater rivers with naturally flowing waters. When <span class="inline-formula">CO<sub>2</sub></span> emissions are compared between reservoirs, IR emissions were 90&thinsp;% higher than values from the XR during low-water season, reinforcing the clear influence of reservoir characteristics on <span class="inline-formula">CO<sub>2</sub></span> emissions. Based on our observations in the Belo Monte hydropower complex, <span class="inline-formula">CO<sub>2</sub></span> emissions from ROR reservoirs to the atmosphere are in the range of natural Amazonian rivers. However, the associated reservoir (IR) may exceed natural river emission rates due to the preimpounding vegetation influence. Since many reservoirs are still planned to be constructed in the Amazon and throughout the world, it is critical to evaluate the implications of reservoir traits on <span class="inline-formula"><i>F</i>CO<sub>2</sub></span> over their entire life cycle in order to improve estimates of <span class="inline-formula">CO<sub>2</sub></span> emissions per kilowatt for hydropower projects planned for tropical rivers.</p>
url https://www.biogeosciences.net/16/3527/2019/bg-16-3527-2019.pdf
work_keys_str_mv AT krdearaujo carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT hosawakuchi carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT hosawakuchi carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT hosawakuchi carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT djbertassolijr carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT aosawakuchi carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT aosawakuchi carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT kddasilva carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT kddasilva carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT tbvieira carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT tbvieira carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT ndward carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT ndward carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT tspereira carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
AT tspereira carbondioxidecosub2subconcentrationsandemissioninthenewlyconstructedbelomontehydropowercomplexinthexinguriveramazonia
_version_ 1724851371081990144
spelling doaj-f3a208d10f8e46e299ba22d5908c71dc2020-11-25T02:25:26ZengCopernicus PublicationsBiogeosciences1726-41701726-41892019-09-01163527354210.5194/bg-16-3527-2019Carbon dioxide (CO<sub>2</sub>) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, AmazoniaK. R. de Araújo0H. O. Sawakuchi1H. O. Sawakuchi2H. O. Sawakuchi3D. J. Bertassoli Jr.4A. O. Sawakuchi5A. O. Sawakuchi6K. D. da Silva7K. D. da Silva8T. B. Vieira9T. B. Vieira10N. D. Ward11N. D. Ward12T. S. Pereira13T. S. Pereira14Programa de Pós Graduação em Biodiversidade e Conservação, Universidade Federal do Pará, Altamira, 68372 – 040, BrazilCentro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, BrazilDepartment of Ecology and Environmental Science, Umeå University, Umeå, 901 87, Swedennow at: Department of Thematic Studies, Environmental Change, Linköping University, Linköping, 581 83, SwedenDepartamento de Geologia Sedimentar e Ambiental, Instituto de Geociências, Universidade de São Paulo, São Paulo, BrazilPrograma de Pós Graduação em Biodiversidade e Conservação, Universidade Federal do Pará, Altamira, 68372 – 040, BrazilDepartamento de Geologia Sedimentar e Ambiental, Instituto de Geociências, Universidade de São Paulo, São Paulo, BrazilPrograma de Pós Graduação em Biodiversidade e Conservação, Universidade Federal do Pará, Altamira, 68372 – 040, BrazilFaculdade de Ciências Biológicas, Universidade Federal do Pará, Altamira, 68372 – 040, BrazilPrograma de Pós Graduação em Biodiversidade e Conservação, Universidade Federal do Pará, Altamira, 68372 – 040, BrazilFaculdade de Ciências Biológicas, Universidade Federal do Pará, Altamira, 68372 – 040, BrazilMarine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USASchool of Oceanography, University of Washington, Seattle, Washington 98195-5351, USAPrograma de Pós Graduação em Biodiversidade e Conservação, Universidade Federal do Pará, Altamira, 68372 – 040, BrazilFaculdade de Ciências Biológicas, Universidade Federal do Pará, Altamira, 68372 – 040, Brazil<p>The Belo Monte hydropower complex located in the Xingu River is the largest run-of-the-river (ROR) hydroelectric system in the world and has one of the highest energy production capacities among dams. Its construction received significant media attention due to its potential social and environmental impacts. It is composed of two ROR reservoirs: the Xingu Reservoir (XR) in the Xingu's main branch and the Intermediate Reservoir (IR), an artificial reservoir fed by waters diverted from the Xingu River with longer water residence time compared to XR. We aimed to evaluate spatiotemporal variations in <span class="inline-formula">CO<sub>2</sub></span> partial pressure (<span class="inline-formula"><i>p</i>CO<sub>2</sub></span>) and <span class="inline-formula">CO<sub>2</sub></span> fluxes (<span class="inline-formula"><i>F</i>CO<sub>2</sub></span>) during the first 2 years after the Xingu River impoundment under the hypothesis that each reservoir has contrasting <span class="inline-formula"><i>F</i>CO<sub>2</sub></span> and <span class="inline-formula"><i>p</i>CO<sub>2</sub></span> as vegetation clearing reduces flooded area emissions. Time of the year had a significant influence on <span class="inline-formula"><i>p</i>CO<sub>2</sub></span> with the highest average values observed during the high-water season. Spatial heterogeneity throughout the entire study area was observed for <span class="inline-formula"><i>p</i>CO<sub>2</sub></span> during both low- and high-water seasons. <span class="inline-formula"><i>F</i>CO<sub>2</sub></span>, on the other hand, only showed significant spatial heterogeneity during the high-water period. <span class="inline-formula"><i>F</i>CO<sub>2</sub></span> (<span class="inline-formula">0.90±0.47</span> and <span class="inline-formula">1.08±0.62</span>&thinsp;<span class="inline-formula">µ</span>mol&thinsp;m<span class="inline-formula"><sup>2</sup></span>&thinsp;d<span class="inline-formula"><sup>−1</sup></span> for XR and IR, respectively) and <span class="inline-formula"><i>p</i>CO<sub>2</sub></span> (<span class="inline-formula">1647±698</span> and <span class="inline-formula">1676±323</span>&thinsp;<span class="inline-formula">µ</span>atm for XR and IR, respectively) measured during the high-water season were on the same order of magnitude as previous observations in other Amazonian clearwater rivers unaffected by impoundment during the same season. In contrast, during the low-water season <span class="inline-formula"><i>F</i>CO<sub>2</sub></span> (<span class="inline-formula">0.69±0.28</span> and <span class="inline-formula">7.32±4.07</span>&thinsp;<span class="inline-formula">µ</span>mol&thinsp;m<span class="inline-formula"><sup>2</sup></span>&thinsp;d<span class="inline-formula"><sup>−1</sup></span> for XR and IR, respectively) and <span class="inline-formula"><i>p</i>CO<sub>2</sub></span> (<span class="inline-formula">839±646</span> and <span class="inline-formula">1797±354</span>&thinsp;<span class="inline-formula">µ</span>atm for XR and IR, respectively) in IR were an order of magnitude higher than literature <span class="inline-formula"><i>F</i>CO<sub>2</sub></span> observations in clearwater rivers with naturally flowing waters. When <span class="inline-formula">CO<sub>2</sub></span> emissions are compared between reservoirs, IR emissions were 90&thinsp;% higher than values from the XR during low-water season, reinforcing the clear influence of reservoir characteristics on <span class="inline-formula">CO<sub>2</sub></span> emissions. Based on our observations in the Belo Monte hydropower complex, <span class="inline-formula">CO<sub>2</sub></span> emissions from ROR reservoirs to the atmosphere are in the range of natural Amazonian rivers. However, the associated reservoir (IR) may exceed natural river emission rates due to the preimpounding vegetation influence. Since many reservoirs are still planned to be constructed in the Amazon and throughout the world, it is critical to evaluate the implications of reservoir traits on <span class="inline-formula"><i>F</i>CO<sub>2</sub></span> over their entire life cycle in order to improve estimates of <span class="inline-formula">CO<sub>2</sub></span> emissions per kilowatt for hydropower projects planned for tropical rivers.</p>https://www.biogeosciences.net/16/3527/2019/bg-16-3527-2019.pdf