Partial mitochondrial complex I inhibition induces oxidative damage and perturbs glutamate transport in primary retinal cultures.

Leber Hereditary Optic Neuropathy (LHON) is a maternally inherited form of visual loss, due to selective degeneration of retinal ganglion cells. Despite the established aetiological association between LHON and mitochondrial DNA mutations affecting complex I of the electron transport chain, the path...

Full description

Bibliographic Details
Main Authors: Simone Beretta, John P.M. Wood, Barry Derham, Gessica Sala, Lucio Tremolizzo, Carlo Ferrarese, Neville N. Osborne
Format: Article
Language:English
Published: Elsevier 2006-11-01
Series:Neurobiology of Disease
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996106001677
Description
Summary:Leber Hereditary Optic Neuropathy (LHON) is a maternally inherited form of visual loss, due to selective degeneration of retinal ganglion cells. Despite the established aetiological association between LHON and mitochondrial DNA mutations affecting complex I of the electron transport chain, the pathophysiology of this disorder remains obscure. Primary rat retinal cultures were exposed to increasing concentrations of rotenone to titrate complex I inhibition. Neural cells were more sensitive than Müller glial cells to rotenone toxicity. Rotenone induced an increase in mitochondrial-derived free radicals and lipid peroxidation. Sodium-dependent glutamate uptake, which is mostly mediated by the glutamate transporter GLAST expressed by Müller glial cells, was reduced dose-dependently by rotenone with no changes in GLAST expression. Our findings suggest that complex I-derived free radicals and disruption of glutamate transport might represent key elements for explaining the selective retinal ganglion cell death in LHON.
ISSN:1095-953X