The Hausdorff core problem on simple polygons

A polygon \(Q\) is a \(k\)-bounded Hausdorff Core of a polygon \(P\) if \(P\) contains \(Q\), \(Q\) is convex, and the Hausdorff distance between \(P\) and \(Q\) is at most \(k\). A Hausdorff Core of \(P\) is a \(k\)-bounded Hausdorff Core of \(P\) with the minimum possible value of \(k\), which we...

Full description

Bibliographic Details
Main Authors: Reza Dorrigiv, Stephane Durocher, Arash Farzan, Robert Fraser, Alejandro Lopez-Ortiz, J. Ian Munro, Alejandro Salinger, Matthew Skala
Format: Article
Language:English
Published: Carleton University 2014-02-01
Series:Journal of Computational Geometry
Online Access:http://jocg.org/index.php/jocg/article/view/127
id doaj-f385bdddbcb644e1af089a95808780a4
record_format Article
spelling doaj-f385bdddbcb644e1af089a95808780a42020-11-25T01:08:50ZengCarleton UniversityJournal of Computational Geometry1920-180X2014-02-015110.20382/jocg.v5i1a245The Hausdorff core problem on simple polygonsReza Dorrigiv0Stephane Durocher1Arash Farzan2Robert Fraser3Alejandro Lopez-Ortiz4J. Ian Munro5Alejandro Salinger6Matthew Skala7Dalhousie UniversityUniversity of ManitobaMax-Planck-Institut f\"ur InformatikUniversity of ManitobaUniversity of WaterlooUniversity of WaterlooUniversity of WaterlooUniversity of ManitobaA polygon \(Q\) is a \(k\)-bounded Hausdorff Core of a polygon \(P\) if \(P\) contains \(Q\), \(Q\) is convex, and the Hausdorff distance between \(P\) and \(Q\) is at most \(k\). A Hausdorff Core of \(P\) is a \(k\)-bounded Hausdorff Core of \(P\) with the minimum possible value of \(k\), which we denote \(k_{\min}\). Given any \(k\) and any \(\varepsilon\gt 0\), we describe an algorithm for computing a \(k'\)-bounded Hausdorff Core (if one exists) in \(O(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2}))\) time, where \(k'\lt k+d_{\text{rad}}\cdot\varepsilon\) and \(d_{\text{rad}}\) is the radius of the smallest disc that encloses \(P\) and whose center is in \(P\). We use this solution to provide an approximation algorithm for the optimization Hausdorff Core problem which results in a solution of size \(k_{\min}+d_{\text{rad}}\cdot\varepsilon\) in \(O(\log(\varepsilon^{-1})(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2})))\) time. Finally, we describe an approximation scheme for the \(k\)-bounded Hausdorff Core problem which, given a polygon \(P\), a distance \(k\), and any \(\varepsilon\gt 0\), answers true if there is a \(((1+\varepsilon)k)\)-bounded Hausdorff Core and false if there is no \(k\)-bounded Hausdorff Core. The running time of the approximation scheme is in \(O(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2}))\).http://jocg.org/index.php/jocg/article/view/127
collection DOAJ
language English
format Article
sources DOAJ
author Reza Dorrigiv
Stephane Durocher
Arash Farzan
Robert Fraser
Alejandro Lopez-Ortiz
J. Ian Munro
Alejandro Salinger
Matthew Skala
spellingShingle Reza Dorrigiv
Stephane Durocher
Arash Farzan
Robert Fraser
Alejandro Lopez-Ortiz
J. Ian Munro
Alejandro Salinger
Matthew Skala
The Hausdorff core problem on simple polygons
Journal of Computational Geometry
author_facet Reza Dorrigiv
Stephane Durocher
Arash Farzan
Robert Fraser
Alejandro Lopez-Ortiz
J. Ian Munro
Alejandro Salinger
Matthew Skala
author_sort Reza Dorrigiv
title The Hausdorff core problem on simple polygons
title_short The Hausdorff core problem on simple polygons
title_full The Hausdorff core problem on simple polygons
title_fullStr The Hausdorff core problem on simple polygons
title_full_unstemmed The Hausdorff core problem on simple polygons
title_sort hausdorff core problem on simple polygons
publisher Carleton University
series Journal of Computational Geometry
issn 1920-180X
publishDate 2014-02-01
description A polygon \(Q\) is a \(k\)-bounded Hausdorff Core of a polygon \(P\) if \(P\) contains \(Q\), \(Q\) is convex, and the Hausdorff distance between \(P\) and \(Q\) is at most \(k\). A Hausdorff Core of \(P\) is a \(k\)-bounded Hausdorff Core of \(P\) with the minimum possible value of \(k\), which we denote \(k_{\min}\). Given any \(k\) and any \(\varepsilon\gt 0\), we describe an algorithm for computing a \(k'\)-bounded Hausdorff Core (if one exists) in \(O(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2}))\) time, where \(k'\lt k+d_{\text{rad}}\cdot\varepsilon\) and \(d_{\text{rad}}\) is the radius of the smallest disc that encloses \(P\) and whose center is in \(P\). We use this solution to provide an approximation algorithm for the optimization Hausdorff Core problem which results in a solution of size \(k_{\min}+d_{\text{rad}}\cdot\varepsilon\) in \(O(\log(\varepsilon^{-1})(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2})))\) time. Finally, we describe an approximation scheme for the \(k\)-bounded Hausdorff Core problem which, given a polygon \(P\), a distance \(k\), and any \(\varepsilon\gt 0\), answers true if there is a \(((1+\varepsilon)k)\)-bounded Hausdorff Core and false if there is no \(k\)-bounded Hausdorff Core. The running time of the approximation scheme is in \(O(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2}))\).
url http://jocg.org/index.php/jocg/article/view/127
work_keys_str_mv AT rezadorrigiv thehausdorffcoreproblemonsimplepolygons
AT stephanedurocher thehausdorffcoreproblemonsimplepolygons
AT arashfarzan thehausdorffcoreproblemonsimplepolygons
AT robertfraser thehausdorffcoreproblemonsimplepolygons
AT alejandrolopezortiz thehausdorffcoreproblemonsimplepolygons
AT jianmunro thehausdorffcoreproblemonsimplepolygons
AT alejandrosalinger thehausdorffcoreproblemonsimplepolygons
AT matthewskala thehausdorffcoreproblemonsimplepolygons
AT rezadorrigiv hausdorffcoreproblemonsimplepolygons
AT stephanedurocher hausdorffcoreproblemonsimplepolygons
AT arashfarzan hausdorffcoreproblemonsimplepolygons
AT robertfraser hausdorffcoreproblemonsimplepolygons
AT alejandrolopezortiz hausdorffcoreproblemonsimplepolygons
AT jianmunro hausdorffcoreproblemonsimplepolygons
AT alejandrosalinger hausdorffcoreproblemonsimplepolygons
AT matthewskala hausdorffcoreproblemonsimplepolygons
_version_ 1725181381377523712