The Hausdorff core problem on simple polygons
A polygon \(Q\) is a \(k\)-bounded Hausdorff Core of a polygon \(P\) if \(P\) contains \(Q\), \(Q\) is convex, and the Hausdorff distance between \(P\) and \(Q\) is at most \(k\). A Hausdorff Core of \(P\) is a \(k\)-bounded Hausdorff Core of \(P\) with the minimum possible value of \(k\), which we...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Carleton University
2014-02-01
|
Series: | Journal of Computational Geometry |
Online Access: | http://jocg.org/index.php/jocg/article/view/127 |
id |
doaj-f385bdddbcb644e1af089a95808780a4 |
---|---|
record_format |
Article |
spelling |
doaj-f385bdddbcb644e1af089a95808780a42020-11-25T01:08:50ZengCarleton UniversityJournal of Computational Geometry1920-180X2014-02-015110.20382/jocg.v5i1a245The Hausdorff core problem on simple polygonsReza Dorrigiv0Stephane Durocher1Arash Farzan2Robert Fraser3Alejandro Lopez-Ortiz4J. Ian Munro5Alejandro Salinger6Matthew Skala7Dalhousie UniversityUniversity of ManitobaMax-Planck-Institut f\"ur InformatikUniversity of ManitobaUniversity of WaterlooUniversity of WaterlooUniversity of WaterlooUniversity of ManitobaA polygon \(Q\) is a \(k\)-bounded Hausdorff Core of a polygon \(P\) if \(P\) contains \(Q\), \(Q\) is convex, and the Hausdorff distance between \(P\) and \(Q\) is at most \(k\). A Hausdorff Core of \(P\) is a \(k\)-bounded Hausdorff Core of \(P\) with the minimum possible value of \(k\), which we denote \(k_{\min}\). Given any \(k\) and any \(\varepsilon\gt 0\), we describe an algorithm for computing a \(k'\)-bounded Hausdorff Core (if one exists) in \(O(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2}))\) time, where \(k'\lt k+d_{\text{rad}}\cdot\varepsilon\) and \(d_{\text{rad}}\) is the radius of the smallest disc that encloses \(P\) and whose center is in \(P\). We use this solution to provide an approximation algorithm for the optimization Hausdorff Core problem which results in a solution of size \(k_{\min}+d_{\text{rad}}\cdot\varepsilon\) in \(O(\log(\varepsilon^{-1})(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2})))\) time. Finally, we describe an approximation scheme for the \(k\)-bounded Hausdorff Core problem which, given a polygon \(P\), a distance \(k\), and any \(\varepsilon\gt 0\), answers true if there is a \(((1+\varepsilon)k)\)-bounded Hausdorff Core and false if there is no \(k\)-bounded Hausdorff Core. The running time of the approximation scheme is in \(O(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2}))\).http://jocg.org/index.php/jocg/article/view/127 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Reza Dorrigiv Stephane Durocher Arash Farzan Robert Fraser Alejandro Lopez-Ortiz J. Ian Munro Alejandro Salinger Matthew Skala |
spellingShingle |
Reza Dorrigiv Stephane Durocher Arash Farzan Robert Fraser Alejandro Lopez-Ortiz J. Ian Munro Alejandro Salinger Matthew Skala The Hausdorff core problem on simple polygons Journal of Computational Geometry |
author_facet |
Reza Dorrigiv Stephane Durocher Arash Farzan Robert Fraser Alejandro Lopez-Ortiz J. Ian Munro Alejandro Salinger Matthew Skala |
author_sort |
Reza Dorrigiv |
title |
The Hausdorff core problem on simple polygons |
title_short |
The Hausdorff core problem on simple polygons |
title_full |
The Hausdorff core problem on simple polygons |
title_fullStr |
The Hausdorff core problem on simple polygons |
title_full_unstemmed |
The Hausdorff core problem on simple polygons |
title_sort |
hausdorff core problem on simple polygons |
publisher |
Carleton University |
series |
Journal of Computational Geometry |
issn |
1920-180X |
publishDate |
2014-02-01 |
description |
A polygon \(Q\) is a \(k\)-bounded Hausdorff Core of a polygon \(P\) if \(P\) contains \(Q\), \(Q\) is convex, and the Hausdorff distance between \(P\) and \(Q\) is at most \(k\). A Hausdorff Core of \(P\) is a \(k\)-bounded Hausdorff Core of \(P\) with the minimum possible value of \(k\), which we denote \(k_{\min}\). Given any \(k\) and any \(\varepsilon\gt 0\), we describe an algorithm for computing a \(k'\)-bounded Hausdorff Core (if one exists) in \(O(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2}))\) time, where \(k'\lt k+d_{\text{rad}}\cdot\varepsilon\) and \(d_{\text{rad}}\) is the radius of the smallest disc that encloses \(P\) and whose center is in \(P\). We use this solution to provide an approximation algorithm for the optimization Hausdorff Core problem which results in a solution of size \(k_{\min}+d_{\text{rad}}\cdot\varepsilon\) in \(O(\log(\varepsilon^{-1})(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2})))\) time. Finally, we describe an approximation scheme for the \(k\)-bounded Hausdorff Core problem which, given a polygon \(P\), a distance \(k\), and any \(\varepsilon\gt 0\), answers true if there is a \(((1+\varepsilon)k)\)-bounded Hausdorff Core and false if there is no \(k\)-bounded Hausdorff Core. The running time of the approximation scheme is in \(O(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2}))\). |
url |
http://jocg.org/index.php/jocg/article/view/127 |
work_keys_str_mv |
AT rezadorrigiv thehausdorffcoreproblemonsimplepolygons AT stephanedurocher thehausdorffcoreproblemonsimplepolygons AT arashfarzan thehausdorffcoreproblemonsimplepolygons AT robertfraser thehausdorffcoreproblemonsimplepolygons AT alejandrolopezortiz thehausdorffcoreproblemonsimplepolygons AT jianmunro thehausdorffcoreproblemonsimplepolygons AT alejandrosalinger thehausdorffcoreproblemonsimplepolygons AT matthewskala thehausdorffcoreproblemonsimplepolygons AT rezadorrigiv hausdorffcoreproblemonsimplepolygons AT stephanedurocher hausdorffcoreproblemonsimplepolygons AT arashfarzan hausdorffcoreproblemonsimplepolygons AT robertfraser hausdorffcoreproblemonsimplepolygons AT alejandrolopezortiz hausdorffcoreproblemonsimplepolygons AT jianmunro hausdorffcoreproblemonsimplepolygons AT alejandrosalinger hausdorffcoreproblemonsimplepolygons AT matthewskala hausdorffcoreproblemonsimplepolygons |
_version_ |
1725181381377523712 |