impulseest: A Python package for non-parametric impulse response estimation with input–output data

This paper presents the impulseest Python package, used for estimating the impulse response of a system relying solely on input and output data. This package can provide estimates in a non-parametric fashion either with regularization techniques. For the regularized estimates, impulseest function us...

Full description

Bibliographic Details
Main Authors: Luan Vinícius Fiorio, Chrystian Lenon Remes, Yales Rômulo de Novaes
Format: Article
Language:English
Published: Elsevier 2021-07-01
Series:SoftwareX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352711021000832
id doaj-f385b1651a69448e83fdeddcbe54c173
record_format Article
spelling doaj-f385b1651a69448e83fdeddcbe54c1732021-07-13T04:09:45ZengElsevierSoftwareX2352-71102021-07-0115100761impulseest: A Python package for non-parametric impulse response estimation with input–output dataLuan Vinícius Fiorio0Chrystian Lenon Remes1Yales Rômulo de Novaes2Santa Catarina State University, R. Paulo Malschitzki, 200 - Zona Industrial Norte, Joinville SC, 89219-710, Brazil; Corresponding author.Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 103 - Centro Histórico, Porto Alegre RS, 90035-190, BrazilSanta Catarina State University, R. Paulo Malschitzki, 200 - Zona Industrial Norte, Joinville SC, 89219-710, BrazilThis paper presents the impulseest Python package, used for estimating the impulse response of a system relying solely on input and output data. This package can provide estimates in a non-parametric fashion either with regularization techniques. For the regularized estimates, impulseest function uses the Empirical Bayes method. On the other hand, the non-regularized case is solved through the least squares algorithm. This function is tested considering an experimental situation, several dynamic processes and also through Monte Carlo simulations. The obtained results are analyzed mainly in terms of the Mean Square Error (MSE), besides other quantities. Through those results, it is shown that the impulseest function with regularization using the proposed regularization kernels leads to low MSE for all tested cases.http://www.sciencedirect.com/science/article/pii/S2352711021000832Impulse responseEstimationRegularization
collection DOAJ
language English
format Article
sources DOAJ
author Luan Vinícius Fiorio
Chrystian Lenon Remes
Yales Rômulo de Novaes
spellingShingle Luan Vinícius Fiorio
Chrystian Lenon Remes
Yales Rômulo de Novaes
impulseest: A Python package for non-parametric impulse response estimation with input–output data
SoftwareX
Impulse response
Estimation
Regularization
author_facet Luan Vinícius Fiorio
Chrystian Lenon Remes
Yales Rômulo de Novaes
author_sort Luan Vinícius Fiorio
title impulseest: A Python package for non-parametric impulse response estimation with input–output data
title_short impulseest: A Python package for non-parametric impulse response estimation with input–output data
title_full impulseest: A Python package for non-parametric impulse response estimation with input–output data
title_fullStr impulseest: A Python package for non-parametric impulse response estimation with input–output data
title_full_unstemmed impulseest: A Python package for non-parametric impulse response estimation with input–output data
title_sort impulseest: a python package for non-parametric impulse response estimation with input–output data
publisher Elsevier
series SoftwareX
issn 2352-7110
publishDate 2021-07-01
description This paper presents the impulseest Python package, used for estimating the impulse response of a system relying solely on input and output data. This package can provide estimates in a non-parametric fashion either with regularization techniques. For the regularized estimates, impulseest function uses the Empirical Bayes method. On the other hand, the non-regularized case is solved through the least squares algorithm. This function is tested considering an experimental situation, several dynamic processes and also through Monte Carlo simulations. The obtained results are analyzed mainly in terms of the Mean Square Error (MSE), besides other quantities. Through those results, it is shown that the impulseest function with regularization using the proposed regularization kernels leads to low MSE for all tested cases.
topic Impulse response
Estimation
Regularization
url http://www.sciencedirect.com/science/article/pii/S2352711021000832
work_keys_str_mv AT luanviniciusfiorio impulseestapythonpackagefornonparametricimpulseresponseestimationwithinputoutputdata
AT chrystianlenonremes impulseestapythonpackagefornonparametricimpulseresponseestimationwithinputoutputdata
AT yalesromulodenovaes impulseestapythonpackagefornonparametricimpulseresponseestimationwithinputoutputdata
_version_ 1721306416530063360