impulseest: A Python package for non-parametric impulse response estimation with input–output data
This paper presents the impulseest Python package, used for estimating the impulse response of a system relying solely on input and output data. This package can provide estimates in a non-parametric fashion either with regularization techniques. For the regularized estimates, impulseest function us...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-07-01
|
Series: | SoftwareX |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352711021000832 |
id |
doaj-f385b1651a69448e83fdeddcbe54c173 |
---|---|
record_format |
Article |
spelling |
doaj-f385b1651a69448e83fdeddcbe54c1732021-07-13T04:09:45ZengElsevierSoftwareX2352-71102021-07-0115100761impulseest: A Python package for non-parametric impulse response estimation with input–output dataLuan Vinícius Fiorio0Chrystian Lenon Remes1Yales Rômulo de Novaes2Santa Catarina State University, R. Paulo Malschitzki, 200 - Zona Industrial Norte, Joinville SC, 89219-710, Brazil; Corresponding author.Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 103 - Centro Histórico, Porto Alegre RS, 90035-190, BrazilSanta Catarina State University, R. Paulo Malschitzki, 200 - Zona Industrial Norte, Joinville SC, 89219-710, BrazilThis paper presents the impulseest Python package, used for estimating the impulse response of a system relying solely on input and output data. This package can provide estimates in a non-parametric fashion either with regularization techniques. For the regularized estimates, impulseest function uses the Empirical Bayes method. On the other hand, the non-regularized case is solved through the least squares algorithm. This function is tested considering an experimental situation, several dynamic processes and also through Monte Carlo simulations. The obtained results are analyzed mainly in terms of the Mean Square Error (MSE), besides other quantities. Through those results, it is shown that the impulseest function with regularization using the proposed regularization kernels leads to low MSE for all tested cases.http://www.sciencedirect.com/science/article/pii/S2352711021000832Impulse responseEstimationRegularization |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Luan Vinícius Fiorio Chrystian Lenon Remes Yales Rômulo de Novaes |
spellingShingle |
Luan Vinícius Fiorio Chrystian Lenon Remes Yales Rômulo de Novaes impulseest: A Python package for non-parametric impulse response estimation with input–output data SoftwareX Impulse response Estimation Regularization |
author_facet |
Luan Vinícius Fiorio Chrystian Lenon Remes Yales Rômulo de Novaes |
author_sort |
Luan Vinícius Fiorio |
title |
impulseest: A Python package for non-parametric impulse response estimation with input–output data |
title_short |
impulseest: A Python package for non-parametric impulse response estimation with input–output data |
title_full |
impulseest: A Python package for non-parametric impulse response estimation with input–output data |
title_fullStr |
impulseest: A Python package for non-parametric impulse response estimation with input–output data |
title_full_unstemmed |
impulseest: A Python package for non-parametric impulse response estimation with input–output data |
title_sort |
impulseest: a python package for non-parametric impulse response estimation with input–output data |
publisher |
Elsevier |
series |
SoftwareX |
issn |
2352-7110 |
publishDate |
2021-07-01 |
description |
This paper presents the impulseest Python package, used for estimating the impulse response of a system relying solely on input and output data. This package can provide estimates in a non-parametric fashion either with regularization techniques. For the regularized estimates, impulseest function uses the Empirical Bayes method. On the other hand, the non-regularized case is solved through the least squares algorithm. This function is tested considering an experimental situation, several dynamic processes and also through Monte Carlo simulations. The obtained results are analyzed mainly in terms of the Mean Square Error (MSE), besides other quantities. Through those results, it is shown that the impulseest function with regularization using the proposed regularization kernels leads to low MSE for all tested cases. |
topic |
Impulse response Estimation Regularization |
url |
http://www.sciencedirect.com/science/article/pii/S2352711021000832 |
work_keys_str_mv |
AT luanviniciusfiorio impulseestapythonpackagefornonparametricimpulseresponseestimationwithinputoutputdata AT chrystianlenonremes impulseestapythonpackagefornonparametricimpulseresponseestimationwithinputoutputdata AT yalesromulodenovaes impulseestapythonpackagefornonparametricimpulseresponseestimationwithinputoutputdata |
_version_ |
1721306416530063360 |