Safety Evaluation of Silicon Carbide and Zircaloy-4 Cladding during a Large-Break Loss-of-Coolant Accident

In this study, we aim to conduct structural analyses of cladding materials, such as silicon carbide and zircaloy-4, during a Large-Break Loss-of-Coolant Accident. The safety margin is the key consideration regarding the performance of the cladding materials. Our study shows that, in terms of primary...

Full description

Bibliographic Details
Main Authors: Kwangwon Ahn, Kyohun Joo, Sung-Pil Park
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/11/12/3324
Description
Summary:In this study, we aim to conduct structural analyses of cladding materials, such as silicon carbide and zircaloy-4, during a Large-Break Loss-of-Coolant Accident. The safety margin is the key consideration regarding the performance of the cladding materials. Our study shows that, in terms of primary stresses, SiC has a greater safety margin than zircaloy-4 due to SiC having a higher yield and ultimate strength; the cladding outer pressure is not affected by the cladding materials and, thus, the primary stresses of all cladding materials are the same. However, for secondary stresses, zircaloy-4 has the smallest fluctuation and irradiated SiC recorded the largest; secondary stresses and temperature histories are material-dependent. Ultimately, both cladding materials were found to have sufficient safety margins with respect to primary and secondary stresses.
ISSN:1996-1073