Renormalizability of $${\mathcal {N}}=1$$ N=1 super Yang–Mills theory in Landau gauge with a Stueckelberg-like field

Abstract We construct a vector gauge invariant transverse field configuration $$V^H$$ VH , consisting of the well-known superfield V and of a Stueckelberg-like chiral superfield $$\Xi $$ Ξ . The renormalizability of the Super Yang Mills action in the Landau gauge is analyzed in the presence of a gau...

Full description

Bibliographic Details
Main Authors: M. A. L. Capri, D. M. van Egmond, M. S. Guimaraes, O. Holanda, S. P. Sorella, R. C. Terin, H. C. Toledo
Format: Article
Language:English
Published: SpringerOpen 2018-10-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-018-6239-5
Description
Summary:Abstract We construct a vector gauge invariant transverse field configuration $$V^H$$ VH , consisting of the well-known superfield V and of a Stueckelberg-like chiral superfield $$\Xi $$ Ξ . The renormalizability of the Super Yang Mills action in the Landau gauge is analyzed in the presence of a gauge invariant mass term $$m^2 \int dV {\mathcal {M}}(V^H)$$ m2∫dVM(VH) , with $${\mathcal {M}}(V^H)$$ M(VH) a power series in $$V^H$$ VH . Unlike the original Stueckelberg action, the resulting action turns out to be renormalizable to all orders.
ISSN:1434-6044
1434-6052