IFFO: An Improved Fruit Fly Optimization Algorithm for Multiple Workflow Scheduling Minimizing Cost and Makespan in Cloud Computing Environments

Cloud computing platforms have been extensively using scientific workflows to execute large-scale applications. However, multiobjective workflow scheduling with scientific standards to optimize QoS parameters is a challenging task. Various metaheuristic scheduling techniques have been proposed to sa...

Full description

Bibliographic Details
Main Authors: Ambika Aggarwal, Priti Dimri, Amit Agarwal, Madhushi Verma, Hesham A. Alhumyani, Mehedi Masud
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2021/5205530
Description
Summary:Cloud computing platforms have been extensively using scientific workflows to execute large-scale applications. However, multiobjective workflow scheduling with scientific standards to optimize QoS parameters is a challenging task. Various metaheuristic scheduling techniques have been proposed to satisfy the QoS parameters like makespan, cost, and resource utilization. Still, traditional metaheuristic approaches are incompetent to maintain agreeable equilibrium between exploration and exploitation of the search space because of their limitations like getting trapped in local optimum value at later evolution stages and higher-dimensional nonlinear optimization problem. This paper proposes an improved Fruit Fly Optimization (IFFO) algorithm to minimize makespan and cost for scheduling multiple workflows in the cloud computing environment. The proposed algorithm is evaluated using CloudSim for scheduling multiple workflows. The comparative results depict that the proposed algorithm IFFO outperforms FFO, PSO, and GA.
ISSN:1563-5147