Effect of Inlet Air Pre-Cooling of Water Injection on Compressor Performance at High Flight Mach
In high altitude and Mach number, the inflow air with the high temperature will influence on the aero-engine performance while the mass injection pre-compressor cooling (MIPCC) technology is one of the problem-solving ways to reduce high temperature. To explore the convection coupling process betwee...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Isfahan University of Technology
2019-01-01
|
Series: | Journal of Applied Fluid Mechanics |
Subjects: | |
Online Access: | http://jafmonline.net/JournalArchive/download?file_ID=48405&issue_ID=255 |
id |
doaj-f3591c528ead47e9acb307c34a25127e |
---|---|
record_format |
Article |
spelling |
doaj-f3591c528ead47e9acb307c34a25127e2020-11-25T02:10:50ZengIsfahan University of Technology Journal of Applied Fluid Mechanics1735-35722019-01-01122421431.Effect of Inlet Air Pre-Cooling of Water Injection on Compressor Performance at High Flight MachA. Q. Lin0Q. Zheng1L. Yang2H. Zhang3College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, HeilongjiangCollege of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang Province, ChinaCollege of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang Province, ChinaCollege of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang Province, ChinaIn high altitude and Mach number, the inflow air with the high temperature will influence on the aero-engine performance while the mass injection pre-compressor cooling (MIPCC) technology is one of the problem-solving ways to reduce high temperature. To explore the convection coupling process between droplet and inflow air, the compressible Reynolds average N-S equations in the compressor coupled with the pre-cooling section is solved by the finite volume method to analyze its performance changes at different water injection rates and droplet sizes. Results show that, in the flight of 3.5 Mach number, the larger water injection rate easily form the shock wave due to the disturbance of droplets in the pre-cooling section. Furthermore, the temperature on the pressure surface near the trailing edge of the rotor blade aggravates along the radial migration, leading to uneven temperature distribution in the radial direction. Within the water injection rates of 0-8% and the particle sizes of 10-20 µm, the inflow mass flow of air improves by 15.3-31.4%; the temperature ratio of compressor drops by 3.6-16.14%, which results in the decrease of specific compression work of the compressor and the changing trend from “increasing” to “decreasing” for the compressor efficiency.http://jafmonline.net/JournalArchive/download?file_ID=48405&issue_ID=255Compressor performance; High Mach; Water injection; MIPCC; Pre-cooling section. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Q. Lin Q. Zheng L. Yang H. Zhang |
spellingShingle |
A. Q. Lin Q. Zheng L. Yang H. Zhang Effect of Inlet Air Pre-Cooling of Water Injection on Compressor Performance at High Flight Mach Journal of Applied Fluid Mechanics Compressor performance; High Mach; Water injection; MIPCC; Pre-cooling section. |
author_facet |
A. Q. Lin Q. Zheng L. Yang H. Zhang |
author_sort |
A. Q. Lin |
title |
Effect of Inlet Air Pre-Cooling of Water Injection on Compressor Performance at High Flight Mach |
title_short |
Effect of Inlet Air Pre-Cooling of Water Injection on Compressor Performance at High Flight Mach |
title_full |
Effect of Inlet Air Pre-Cooling of Water Injection on Compressor Performance at High Flight Mach |
title_fullStr |
Effect of Inlet Air Pre-Cooling of Water Injection on Compressor Performance at High Flight Mach |
title_full_unstemmed |
Effect of Inlet Air Pre-Cooling of Water Injection on Compressor Performance at High Flight Mach |
title_sort |
effect of inlet air pre-cooling of water injection on compressor performance at high flight mach |
publisher |
Isfahan University of Technology |
series |
Journal of Applied Fluid Mechanics |
issn |
1735-3572 |
publishDate |
2019-01-01 |
description |
In high altitude and Mach number, the inflow air with the high temperature will influence on the aero-engine performance while the mass injection pre-compressor cooling (MIPCC) technology is one of the problem-solving ways to reduce high temperature. To explore the convection coupling process between droplet and inflow air, the compressible Reynolds average N-S equations in the compressor coupled with the pre-cooling section is solved by the finite volume method to analyze its performance changes at different water injection rates and droplet sizes. Results show that, in the flight of 3.5 Mach number, the larger water injection rate easily form the shock wave due to the disturbance of droplets in the pre-cooling section. Furthermore, the temperature on the pressure surface near the trailing edge of the rotor blade aggravates along the radial migration, leading to uneven temperature distribution in the radial direction. Within the water injection rates of 0-8% and the particle sizes of 10-20 µm, the inflow mass flow of air improves by 15.3-31.4%; the temperature ratio of compressor drops by 3.6-16.14%, which results in the decrease of specific compression work of the compressor and the changing trend from “increasing” to “decreasing” for the compressor efficiency. |
topic |
Compressor performance; High Mach; Water injection; MIPCC; Pre-cooling section. |
url |
http://jafmonline.net/JournalArchive/download?file_ID=48405&issue_ID=255 |
work_keys_str_mv |
AT aqlin effectofinletairprecoolingofwaterinjectiononcompressorperformanceathighflightmach AT qzheng effectofinletairprecoolingofwaterinjectiononcompressorperformanceathighflightmach AT lyang effectofinletairprecoolingofwaterinjectiononcompressorperformanceathighflightmach AT hzhang effectofinletairprecoolingofwaterinjectiononcompressorperformanceathighflightmach |
_version_ |
1724917160238645248 |